{ [l:IdLnk]. [dt:tg:Id fp-Type]. [tg:Id]. [T:Type].
    (lnk-decl(l;dt)(rcv(l,tg))?T ~ dt(tg)?T) }

{ Proof }



Definitions occuring in Statement :  lnk-decl: lnk-decl(l;dt) fpf-cap: f(x)?z fpf: a:A fp-B[a] Kind-deq: KindDeq id-deq: IdDeq rcv: rcv(l,tg) IdLnk: IdLnk Id: Id uall: [x:A]. B[x] universe: Type sqequal: s ~ t
Definitions :  member: t  T so_lambda: x.t[x] prop: btrue: tt ifthenelse: if b then t else f fi  all: x:A. B[x] implies: P  Q bfalse: ff fpf-cap: f(x)?z rcv: rcv(l,tg) lnk-decl: lnk-decl(l;dt) fpf-ap: f(x) pi2: snd(t) outl: outl(x) fpf-dom: x  dom(f) pi1: fst(t) Id: Id exists: x:A. B[x] and: P  Q uall: [x:A]. B[x] so_apply: x[s] bool: unit: Unit iff: P  Q not: A false: False fpf: a:A fp-B[a] rev_implies: P  Q uimplies: b supposing a guard: {T} sq_type: SQType(T) it:
Lemmas :  Id_wf fpf_wf IdLnk_wf fpf-dom_wf id-deq_wf fpf-trivial-subtype-top assert_wf not_wf bnot_wf Knd_wf Kind-deq_wf lnk-decl_wf top_wf rcv_wf bool_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot assert-deq-member map_wf member_map rcv_one_one subtype_base_sq atom2_subtype_base l_member_wf

\mforall{}[l:IdLnk].  \mforall{}[dt:tg:Id  fp->  Type].  \mforall{}[tg:Id].  \mforall{}[T:Type].    (lnk-decl(l;dt)(rcv(l,tg))?T  \msim{}  dt(tg)?T)


Date html generated: 2011_08_10-AM-08_10_13
Last ObjectModification: 2011_06_18-AM-08_26_15

Home Index