{ [Info:Type]. [es:EO+(Info)]. [A,B:Type]. [P:A  ]. [f:A  B].
  [X:EClass(A)]. [e:E].
    (f[v] where v from X such that P[v])(e) ~ f[X(e)] 
    supposing e  (f[v] where v from X such that P[v]) }

{ Proof }



Definitions occuring in Statement :  mapfilter-class: (f[v] where v from X such that P[v]) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b bool: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type sqequal: s ~ t
Definitions :  true: True bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) eq_bool: p =b q strong-subtype: strong-subtype(A;B) record-select: r.x decide: case b of inl(x) =s[x] | inr(y) =t[y] dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b sq_type: SQType(T) subtype_rel: A r B bag: bag(T) empty-bag: {} single-bag: {x} bag-only: only(bs) ifthenelse: if b then t else f fi  bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} false: False lt_int: i <z j le_int: i z j bfalse: ff set: {x:A| B[x]}  real: grp_car: |g| nat: limited-type: LimitedType btrue: tt product: x:A  B[x] and: P  Q uiff: uiff(P;Q) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit union: left + right eclass-val: X(e) eclass-compose1: f o X es-filter-image: f[X] implies: P  Q subtype: S  T void: Void lambda: x.A[x] top: Top apply: f a so_apply: x[s] so_lambda: x.t[x] mapfilter-class: (f[v] where v from X such that P[v]) all: x:A. B[x] in-eclass: e  X equal: s = t prop: assert: b event_ordering: EO es-E: E so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uimplies: b supposing a sqequal: s ~ t event-ordering+: EO+(Info) universe: Type bool: uall: [x:A]. B[x] isect: x:A. B[x] function: x:A  B[x] member: t  T Repeat: Error :Repeat,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic
Lemmas :  nat_wf bag-size_wf eq_int_wf assert_wf not_wf bnot_wf bool_wf assert_of_eq_int not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert eqtt_to_assert event-ordering+_wf event-ordering+_inc es-E_wf eclass_wf top_wf mapfilter-class_wf in-eclass_wf single-bag_wf bag_wf ifthenelse_wf bag-only_wf subtype_base_sq empty-bag_wf false_wf true_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].  \mforall{}[e:E].
    (f[v]  where  v  from  X  such  that  P[v])(e)  \msim{}  f[X(e)] 
    supposing  \muparrow{}e  \mmember{}\msubb{}  (f[v]  where  v  from  X  such  that  P[v])


Date html generated: 2011_08_16-PM-04_14_25
Last ObjectModification: 2011_06_20-AM-00_44_08

Home Index