{ [A:Type]
    eq:EqDecider(A). f:a:A fp-Top. x:A.  (x  dom(f)  (x  fst(f))) }

{ Proof }



Definitions occuring in Statement :  fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uall: [x:A]. B[x] top: Top pi1: fst(t) all: x:A. B[x] iff: P  Q universe: Type l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] fpf: a:A fp-B[a] top: Top iff: P  Q fpf-dom: x  dom(f) member: t  T prop: subtype: S  T and: P  Q implies: P  Q rev_implies: P  Q so_lambda: x.t[x] uimplies: b supposing a so_apply: x[s]
Lemmas :  deq_wf l_member_wf top_wf iff_wf assert_wf deq-member_wf pi1_wf_top uall_functionality_wrt_iff all_functionality_wrt_iff iff_functionality_wrt_iff assert-deq-member

\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}f:a:A  fp->  Top.  \mforall{}x:A.    (\muparrow{}x  \mmember{}  dom(f)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  fst(f)))


Date html generated: 2011_08_10-AM-08_09_27
Last ObjectModification: 2011_06_18-AM-08_25_46

Home Index