Nuprl Lemma : uall_functionality_wrt_iff

[S,T:Type]. ∀[P,Q:S ⟶ ℙ].  (∀[x:S]. (P[x] ⇐⇒ Q[x]))  {∀[x:S]. P[x] ⇐⇒ ∀[y:T]. Q[y]} supposing T ∈ Type


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q implies:  Q prop: rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q
Lemmas referenced :  equal_wf and_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hyp_replacement hypothesisEquality equalitySymmetry hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality cumulativity because_Cache functionEquality universeEquality instantiate isect_memberFormation introduction axiomEquality rename lambdaFormation independent_pairFormation productElimination independent_functionElimination

Latex:
\mforall{}[S,T:Type].  \mforall{}[P,Q:S  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}[x:S].  (P[x]  \mLeftarrow{}{}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  \{\mforall{}[x:S].  P[x]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}[y:T].  Q[y]\}  supposing  S  =  T



Date html generated: 2016_05_13-PM-03_07_43
Last ObjectModification: 2016_01_06-PM-05_28_05

Theory : core_2


Home Index