{ [Info,T:Type]. [X:EClass(T)]. [es:EO+(Info)]. [e:E].
    uiff(v:T. (v  X(e));(X es e) = {}) }

{ Proof }



Definitions occuring in Statement :  classrel: v  X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] not: A apply: f a universe: Type equal: s = t empty-bag: {} bag: bag(T)
Definitions :  tactic: Error :tactic,  Auto: Error :Auto,  isect: x:A. B[x] member: t  T es-E: E event_ordering: EO event-ordering+: EO+(Info) uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type void: Void false: False function: x:A  B[x] implies: P  Q not: A all: x:A. B[x] uimplies: b supposing a equal: s = t product: x:A  B[x] and: P  Q uiff: uiff(P;Q) pair: <a, b> classrel: v  X(e) prop: bag: bag(T) apply: f a empty-bag: {} axiom: Ax lambda: x.A[x] subtype_rel: A r B less_than: a < b ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) record+: record+ dep-isect: Error :dep-isect,  set: {x:A| B[x]}  eq_atom: eq_atom$n(x;y) eq_atom: x =a y assert: b record-select: r.x fpf: a:A fp-B[a] limited-type: LimitedType subtype: S  T CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  rev_implies: P  Q iff: P  Q RepUR: Error :RepUR,  HypSubst: Error :HypSubst,  bag-member: bag-member(T;x;bs) squash: T sq_type: SQType(T) quotient: x,y:A//B[x; y]
Lemmas :  bag-member-empty bag-member_wf subtype_base_sq empty-bag-iff-no-member event-ordering+_wf event-ordering+_inc es-E_wf eclass_wf classrel_wf bag_wf member_wf empty-bag_wf false_wf not_wf

\mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].    uiff(\mforall{}v:T.  (\mneg{}v  \mmember{}  X(e));(X  es  e)  =  \{\})


Date html generated: 2011_08_16-AM-11_28_56
Last ObjectModification: 2011_06_16-PM-06_10_36

Home Index