Nuprl Lemma : num-antecedents-fun_exp

[Info:Type]. [es:EO+(Info)]. [Sys:EClass(Top)]. [f:sys-antecedent(es;Sys)]. [n:]. [e:E(Sys)].
  #f(f^n e) = (#f(e) - n) supposing n  #f(e)


Proof not projected




Definitions occuring in Statement :  num-antecedents: #f(e) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) nat: uimplies: b supposing a uall: [x:A]. B[x] top: Top le: A  B apply: f a subtract: n - m int: universe: Type equal: s = t fun_exp: f^n
Definitions :  uall: [x:A]. B[x] es-E-interface: E(X) uimplies: b supposing a num-antecedents: #f(e) fun_exp: f^n member: t  T prop: so_lambda: x y.t[x; y] primrec: primrec(n;b;c) ycomb: Y ifthenelse: if b then t else f fi  eq_int: (i = j) btrue: tt implies: P  Q le: A  B not: A false: False ge: i  j  all: x:A. B[x] bfalse: ff guard: {T} squash: T true: True top: Top compose: f o g nat: so_apply: x[s1;s2] bool: unit: Unit uiff: uiff(P;Q) and: P  Q sys-antecedent: sys-antecedent(es;Sys) subtype: S  T it:
Lemmas :  nat_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_inc event-ordering+_wf le_wf num-antecedents_wf es-E-interface_wf es-eq-E_wf assert_wf in-eclass_wf bool_wf equal_wf bnot_wf not_wf nat_properties ge_wf uiff_transitivity eqtt_to_assert assert-es-eq-E-2 eqff_to_assert assert_of_bnot not_functionality_wrt_uiff squash_wf true_wf fun_exp_add_sq fun_exp_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[Sys:EClass(Top)].  \mforall{}[f:sys-antecedent(es;Sys)].  \mforall{}[n:\mBbbN{}].  \mforall{}[e:E(Sys)].
    \#f(f\^{}n  e)  =  (\#f(e)  -  n)  supposing  n  \mleq{}  \#f(e)


Date html generated: 2012_01_23-PM-12_23_53
Last ObjectModification: 2011_12_31-AM-11_10_27

Home Index