Nuprl Lemma : parallel-class-loc-bounded
[T,Info:Type]. 
[X,Y:EClass(T)].  (LocBounded(T;X) 
 LocBounded(T;Y) 
 LocBounded(T;X || Y))
Proof not projected
Definitions occuring in Statement : 
parallel-class: X || Y, 
loc-bounded-class: LocBounded(T;X), 
eclass: EClass(A[eo; e]), 
uall:
[x:A]. B[x], 
implies: P 
 Q, 
universe: Type
Definitions : 
so_lambda: 
x y.t[x; y], 
so_lambda: 
x.t[x], 
prop:
, 
true: True, 
squash:
T, 
sq_or: a 
 b, 
member: t 
 T, 
bag-member: x 
 bs, 
all:
x:A. B[x], 
class-loc-bound: class-loc-bound{i:l}(Info;T;X;L), 
exists:
x:A. B[x], 
loc-bounded-class: LocBounded(T;X), 
implies: P 
 Q, 
uall:
[x:A]. B[x], 
or: P 
 Q, 
so_apply: x[s1;s2], 
so_apply: x[s], 
iff: P 

 Q, 
rev_implies: P 
 Q, 
sq_stable: SqStable(P), 
and: P 
 Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype: S 
 T
Lemmas : 
event-ordering+_wf, 
eclass_wf, 
loc-bounded-class_wf, 
bag-member_wf, 
all_wf, 
event-ordering+_inc, 
es-E_wf, 
parallel-class_wf, 
classrel_wf, 
bag-member-append, 
es-loc_wf, 
sq_stable__bag-member, 
parallel-classrel, 
Id_wf, 
bag-append_wf
\mforall{}[T,Info:Type].  \mforall{}[X,Y:EClass(T)].    (LocBounded(T;X)  {}\mRightarrow{}  LocBounded(T;Y)  {}\mRightarrow{}  LocBounded(T;X  ||  Y))
Date html generated:
2012_01_23-PM-12_23_31
Last ObjectModification:
2011_12_13-PM-01_36_45
Home
Index