{ [T,Info:Type]. [X:EClass(T)].  (X || Empty = X) }

{ Proof }



Definitions occuring in Statement :  parallel-class: X || Y es-empty-interface: Empty eclass: EClass(A[eo; e]) uall: [x:A]. B[x] universe: Type equal: s = t
Definitions :  atom: Atom es-base-E: es-base-E(es) token: "$token" so_apply: x[s] implies: P  Q union: left + right or: P  Q guard: {T} l_member: (x  l) record-select: r.x set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  es-E-interface: Error :es-E-interface,  assert: b apply: f a eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] top: Top pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] parallel-class: X || Y es-empty-interface: Empty axiom: Ax universe: Type equal: s = t uall: [x:A]. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) member: t  T isect: x:A. B[x] eclass-compose2: eclass-compose2(f;X;Y) bag-append: as + bs sqequal: s ~ t Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  bag-append-empty bag_wf eclass_wf parallel-class_wf Error :es-interface-top,  subtype_rel_wf event-ordering+_wf es-E_wf member_wf event-ordering+_inc es-empty-interface_wf es-base-E_wf subtype_rel_self

\mforall{}[T,Info:Type].  \mforall{}[X:EClass(T)].    (X  ||  Empty  =  X)


Date html generated: 2011_08_16-AM-11_37_08
Last ObjectModification: 2011_06_20-AM-00_29_58

Home Index