{ [Info,T:Type]. [X:EClass(T)].  (Prior(X)  EClass(T)) }

{ Proof }



Definitions occuring in Statement :  primed-class: Prior(X) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t  T universe: Type
Definitions :  inr: inr x  guard: {T} sq_type: SQType(T) inl: inl x  infix_ap: x f y es-causl: (e < e') cand: A c B real: grp_car: |g| int: nat: natural_number: $n prop: es-locl: (e <loc e') assert: b implies: P  Q product: x:A  B[x] and: P  Q set: {x:A| B[x]}  union: left + right uimplies: b supposing a decide: case b of inl(x) =s[x] | inr(y) =t[y] empty-bag: {} not: A sq_exists: x:{A| B[x]} or: P  Q es-local-pred: last(P) lt_int: i <z j bag-size: bag-size(bs) bag: bag(T) bool: subtype: S  T subtype_rel: A r B eq_atom: eq_atom$n(x;y) atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] function: x:A  B[x] all: x:A. B[x] so_lambda: x y.t[x; y] primed-class: Prior(X) eclass: EClass(A[eo; e]) axiom: Ax universe: Type member: t  T equal: s = t uall: [x:A]. B[x] isect: x:A. B[x]
Lemmas :  member_wf event-ordering+_wf es-E_wf bag_wf nat_wf bag-size_wf lt_int_wf bool_wf assert_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-locl_wf es-local-pred_wf not_wf eclass_wf empty-bag_wf

\mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].    (Prior(X)  \mmember{}  EClass(T))


Date html generated: 2011_08_16-PM-04_43_59
Last ObjectModification: 2011_01_19-PM-12_50_12

Home Index