{ [l_comm,l_choose:Id].  (processComm(l_comm;l_choose)  pi-process()) }

{ Proof }



Definitions occuring in Statement :  processComm: processComm(l_comm;l_choose) pi-process: pi-process() Id: Id uall: [x:A]. B[x] member: t  T
Definitions :  rev_implies: P  Q iff: P  Q cand: A c B record+: record+ record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B squash: T bag: bag(T) top: Top true: True fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) tag-case: z:T tagged+: T |+ z:B token: "$token" fpf-cap: f(x)?z tag-by: zT in-eclass: e  X eq_knd: a = b fpf-dom: x  dom(f) limited-type: LimitedType btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit so_apply: x[s] or: P  Q guard: {T} assert: b corec: corec(T.F[T]) process: process(P.M[P];P.E[P]) Process: Process(P.M[P]) make-lg: make-lg(L) Comm-next-continue: Comm-next-continue(l_comm;l_choose;piD;cSt) pDVcontinue?: pDVcontinue?(x) Comm-next-selex: Comm-next-selex(l_comm;piD;cSt) pDVselex?: pDVselex?(x) es-E-interface: E(X) dep-isect: Error :dep-isect,  labeled-graph: LabeledGraph(T) Comm-output: Comm-output() Comm-next-guards: Comm-next-guards(l_comm;piD;cSt) fpf: a:A fp-B[a] decision: Decision inl: inl x  union: left + right PiDataVal: PiDataVal() pDVguards?: pDVguards?(x) Com: Com(P.M[P]) apply: f a ldag: LabeledDAG(T) ifthenelse: if b then t else f fi  piM: piM(T) p-outcome: Outcome strong-subtype: strong-subtype(A;B) ge: i  j  and: P  Q uiff: uiff(P;Q) prop: less_than: a < b void: Void implies: P  Q false: False not: A le: A  B real: rationals: nat: int: natural_number: $n bfalse: ff nil: [] pi_prefix: pi_prefix() list: type List so_lambda: x.t[x] subtype: S  T eclass: EClass(A[eo; e]) l_member: (x  l) uimplies: b supposing a product: x:A  B[x] fpf-empty: pair: <a, b> subtype_rel: A r B set: {x:A| B[x]}  lambda: x.A[x] so_lambda: x y.t[x; y] rec-process: RecProcess(s0;s,m.next[s; m]) universe: Type bool: function: x:A  B[x] all: x:A. B[x] atom: Atom$n pi-process: pi-process() processComm: processComm(l_comm;l_choose) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] member: t  T equal: s = t Id: Id MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  Comm-state: Comm-state()
Lemmas :  ldag_wf Id_wf Com_wf member_wf Comm-state_wf Comm-output_wf Comm-next-guards_wf piM_wf PiDataVal_wf pDVguards?_wf ifthenelse_wf le_wf false_wf not_wf nat_wf bfalse_wf pi_prefix_wf fpf-empty_wf subtype_rel_wf pi-process_wf rec-process_wf_pi_simple_state pDVselex?_wf Comm-next-selex_wf pDVcontinue?_wf Comm-next-continue_wf make-lg_wf_dag bool_wf eqtt_to_assert assert_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf tag-by_wf unit_wf tag-case_wf tagged+_wf subtype_rel_simple_product subtype_rel_self true_wf squash_wf subtype_rel-ldag isect2_wf subtype_rel_isect2 tag-by-subtype-tag-case

\mforall{}[l$_{comm}$,l$_{choose}$:Id].    (processComm(l$_\mbackslash{}ff7\000Cbcomm}$;l$_{choose}$)  \mmember{}  pi-process())


Date html generated: 2011_08_17-PM-07_03_02
Last ObjectModification: 2011_06_18-PM-12_44_54

Home Index