{ [P:Pi_term]. [choice:{c:pi_prefix()  Pi_term| (c  pi-choices(P))} ].
    (pi-rank(snd(choice)) < pi-rank(P)) }

{ Proof }



Definitions occuring in Statement :  pi-choices: pi-choices(t) pi-rank: pi-rank(p) pi_term: Pi_term pi_prefix: pi_prefix() uall: [x:A]. B[x] pi2: snd(t) less_than: a < b set: {x:A| B[x]}  product: x:A  B[x] l_member: (x  l)
Definitions :  proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j union: left + right or: P  Q pi2: snd(t) length: ||as|| strong-subtype: strong-subtype(A;B) exists: x:A. B[x] le: A  B ge: i  j  natural_number: $n not: A uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B pi-rank: pi-rank(p) axiom: Ax less_than: a < b pi-choices: pi-choices(t) universe: Type prop: isect: x:A. B[x] all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] l_member: (x  l) pi_prefix: pi_prefix() rec: rec(x.A[x]) set: {x:A| B[x]}  equal: s = t pi_term: Pi_term product: x:A  B[x] member: t  T name: Name pi_term_ind_pinew: pi_term_ind_pinew_compseq_tag_def pi_term_ind_pirep: pi_term_ind_pirep_compseq_tag_def pi_term_ind_pipar: pi_term_ind_pipar_compseq_tag_def cand: A c B pi_term_ind_pioption: pi_term_ind_pioption_compseq_tag_def IdLnk: IdLnk Id: Id append: as @ bs locl: locl(a) Knd: Knd sq_stable: SqStable(P) pair: <a, b> cons: [car / cdr] tl: tl(l) hd: hd(l) add: n + m pi_term_ind_picomm: pi_term_ind_picomm_compseq_tag_def void: Void apply: f a so_apply: x[s] false: False iff: P  Q assert: b list: type List nil: [] pi_term_ind_pizero: pi_term_ind_pizero_compseq_tag_def real: grp_car: |g| subtype: S  T int: nat: so_lambda: x.t[x] implies: P  Q guard: {T} lambda: x.A[x] D: Error :D,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  Try: Error :Try,  Unfolds: Error :Unfolds,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  atom: Atom sq_type: SQType(T) THENM: Error :THENM,  eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] Complete: Error :Complete,  AllHyps: Error :AllHyps
Lemmas :  subtype_rel_wf member_wf member_append subtype_base_sq union_subtype_base product_subtype_base list_subtype_base atom_subtype_base nil_member nat_wf pi2_wf pi_term-induction uiff_inversion member_singleton append_wf name_wf l_member_wf pi_prefix_wf pi_term_wf pi-choices_wf pi-rank_wf

\mforall{}[P:Pi\_term].  \mforall{}[choice:\{c:pi\_prefix()  \mtimes{}  Pi\_term|  (c  \mmember{}  pi-choices(P))\}  ].
    (pi-rank(snd(choice))  <  pi-rank(P))


Date html generated: 2011_08_17-PM-06_52_31
Last ObjectModification: 2011_06_18-PM-12_26_35

Home Index