{ [Info,A,B:Type]. [F:Id  bag(A)  bag(B)  bag(B)]. [X:EClass(A)].
    (l,x,s.F[l;x;s]|Loc,X,Prior(self)|  EClass(B)) }

{ Proof }



Definitions occuring in Statement :  rec-combined-loc-class1: l,x,s.F[l; x; s]|Loc,X,Prior(self)| eclass: EClass(A[eo; e]) Id: Id uall: [x:A]. B[x] so_apply: x[s1;s2;s3] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  CollapseTHENA: Error :CollapseTHENA,  natural_number: $n lambda: x.A[x] BHyp: Error :BHyp,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  isect: x:A. B[x] member: t  T eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] uall: [x:A]. B[x] function: x:A  B[x] Id: Id bag: bag(T) universe: Type equal: s = t rec-combined-loc-class1: l,x,s.F[l; x; s]|Loc,X,Prior(self)| so_apply: x[s1;s2;s3] apply: f a axiom: Ax all: x:A. B[x] event-ordering+: EO+(Info) es-E: E event_ordering: EO record+: record+ dep-isect: Error :dep-isect,  record-select: r.x ifthenelse: if b then t else f fi  eq_atom: x =a y token: "$token" es-base-E: es-base-E(es) top: Top atom: Atom eq_atom: eq_atom$n(x;y) subtype_rel: A r B subtype: S  T bool: rec-combined-loc-class: f|Loc, X, Prior(self)| uimplies: b supposing a fpf: a:A fp-B[a] uiff: uiff(P;Q) and: P  Q product: x:A  B[x] less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) int: nat: rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} lelt: i  j < k atom: Atom$n quotient: x,y:A//B[x; y]
Lemmas :  int_seg_wf nat_wf false_wf not_wf le_wf rec-combined-loc-class_wf es-E_wf es-base-E_wf subtype_rel_self event-ordering+_inc event-ordering+_wf Id_wf bag_wf member_wf eclass_wf

\mforall{}[Info,A,B:Type].  \mforall{}[F:Id  {}\mrightarrow{}  bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].
    (l,x,s.F[l;x;s]|Loc,X,Prior(self)|  \mmember{}  EClass(B))


Date html generated: 2011_08_16-PM-04_53_20
Last ObjectModification: 2011_06_21-PM-02_20_33

Home Index