{ [locs:Id List]. [h:Name]. [T:Type].  (BaseClass(h;T)@locs  EClass(T)) }

{ Proof }



Definitions occuring in Statement :  restricted-baseclass: BaseClass(h;T)@locs mData: mData eclass: EClass(A[eo; e]) Id: Id name: Name uall: [x:A]. B[x] member: t  T product: x:A  B[x] list: type List universe: Type
Definitions :  strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) fpf: a:A fp-B[a] es-E-interface: E(X) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b eq_atom: eq_atom$n(x;y) atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y record-select: r.x dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) event_ordering: EO es-E: E event-ordering+: EO+(Info) subtype: S  T uimplies: b supposing a subtype_rel: A r B top: Top so_lambda: x y.t[x; y] ifthenelse: if b then t else f fi  empty-bag: {} baseclass: BaseClass(h;T) deq-member: deq-member(eq;x;L) es-loc: loc(e) id-deq: IdDeq lambda: x.A[x] function: x:A  B[x] all: x:A. B[x] bool: Id: Id eclass: EClass(A[eo; e]) product: x:A  B[x] mData: mData restricted-baseclass: BaseClass(h;T)@locs universe: Type list: type List equal: s = t axiom: Ax member: t  T uall: [x:A]. B[x] isect: x:A. B[x] name: Name Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  tactic: Error :tactic
Lemmas :  mData_wf member_wf eclass_wf name_wf subtype_rel_wf event-ordering+_wf es-E_wf bag_wf baseclass_wf es-interface-top event-ordering+_inc es-base-E_wf subtype_rel_self es-loc_wf id-deq_wf Id_wf deq-member_wf ifthenelse_wf empty-bag_wf

\mforall{}[locs:Id  List].  \mforall{}[h:Name].  \mforall{}[T:Type].    (BaseClass(h;T)@locs  \mmember{}  EClass(T))


Date html generated: 2011_08_17-PM-04_15_10
Last ObjectModification: 2011_06_18-AM-11_33_02

Home Index