{ [h:Name]. [T:Type].  (BaseClass(h;T)  EClass(T)) }

{ Proof }



Definitions occuring in Statement :  baseclass: BaseClass(h;T) mData: mData eclass: EClass(A[eo; e]) name: Name uall: [x:A]. B[x] member: t  T product: x:A  B[x] universe: Type
Definitions :  void: Void sqequal: s ~ t tag-by: zT rev_implies: P  Q iff: P  Q ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 true: True fpf-cap: f(x)?z filter: filter(P;l) es-E-interface: E(X) atom: Atom$n rec: rec(x.A[x]) tunion: x:A.B[x] b-union: A  B in-eclass: e  X eq_knd: a = b fpf-dom: x  dom(f) false: False limited-type: LimitedType prop: bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q bor: p q bnot: b int: unit: Unit sq_type: SQType(T) valueall-type: valueall-type(T) pair: <a, b> atom: Atom es-base-E: es-base-E(es) token: "$token" apply: f a so_apply: x[s] implies: P  Q union: left + right or: P  Q guard: {T} l_member: (x  l) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) fpf: a:A fp-B[a] record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b dep-isect: Error :dep-isect,  record+: record+ permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] bag: bag(T) event_ordering: EO es-E: E event-ordering+: EO+(Info) subtype: S  T uimplies: b supposing a subtype_rel: A r B top: Top so_lambda: x y.t[x; y] spreadn: spread3 ifthenelse: if b then t else f fi  empty-bag: {} single-bag: {x} band: p  q eq_term: a == b name_eq: name_eq(x;y) es-info: info(e) lambda: x.A[x] function: x:A  B[x] all: x:A. B[x] bool: list: type List eclass: EClass(A[eo; e]) product: x:A  B[x] mData: mData baseclass: BaseClass(h;T) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] universe: Type member: t  T equal: s = t name: Name MaAuto: Error :MaAuto,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  bag_wf member_wf mData_wf name_wf event-ordering+_wf event-ordering+_inc es-E_wf eclass_wf permutation_wf es-base-E_wf subtype_rel_self es-info_wf ifthenelse_wf band_wf name_eq_wf eq_term_wf valueall-type_wf bool_wf eqtt_to_assert assert_wf not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf type-valueall-type single-bag_wf subtype_base_sq subtype_rel_wf assert-eq_term empty-bag_wf

\mforall{}[h:Name].  \mforall{}[T:Type].    (BaseClass(h;T)  \mmember{}  EClass(T))


Date html generated: 2011_08_17-PM-04_14_48
Last ObjectModification: 2011_06_18-AM-11_32_50

Home Index