{ [Info,B:Type]. [b:bag(B)].  (simple-comb-0(b)  EClass(B)) }

{ Proof }



Definitions occuring in Statement :  simple-comb-0: simple-comb-0(b) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t  T universe: Type bag: bag(T)
Definitions :  CollapseTHENA: Error :CollapseTHENA,  natural_number: $n so_lambda: x.t[x] unit: Unit Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  BHyp: Error :BHyp,  uall: [x:A]. B[x] isect: x:A. B[x] equal: s = t member: t  T universe: Type axiom: Ax bag: bag(T) simple-comb-0: simple-comb-0(b) eclass: EClass(A[eo; e]) all: x:A. B[x] function: x:A  B[x] simple-comb: simple-comb(F;Xs) lambda: x.A[x] nil: [] select: l[i] so_lambda: x y.t[x; y] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) quotient: x,y:A//B[x; y] fpf: a:A fp-B[a] top: Top int: nat: subtype: S  T rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} event-ordering+: EO+(Info) es-E: E event_ordering: EO list: type List length: ||as||
Lemmas :  unit_wf bag_wf int_seg_wf length_wf2 eclass_wf event-ordering+_wf event-ordering+_inc es-E_wf select_wf le_wf member_wf nat_wf false_wf not_wf simple-comb_wf

\mforall{}[Info,B:Type].  \mforall{}[b:bag(B)].    (simple-comb-0(b)  \mmember{}  EClass(B))


Date html generated: 2011_08_16-PM-05_00_34
Last ObjectModification: 2011_06_02-PM-05_17_02

Home Index