{ [Info,A,B:Type].  F:bag(A)  bag(B). [X:EClass(A)]. (F|X|  EClass(B)) }

{ Proof }



Definitions occuring in Statement :  simple-comb-1: F|X| eclass: EClass(A[eo; e]) uall: [x:A]. B[x] all: x:A. B[x] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  CollapseTHENA: Error :CollapseTHENA,  select: l[i] cons: [car / cdr] nil: [] lambda: x.A[x] apply: f a natural_number: $n CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  member: t  T equal: s = t isect: x:A. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] uall: [x:A]. B[x] function: x:A  B[x] bag: bag(T) all: x:A. B[x] universe: Type simple-comb-1: F|X| axiom: Ax event-ordering+: EO+(Info) es-E: E event_ordering: EO subtype: S  T simple-comb: simple-comb(F;Xs) subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) fpf: a:A fp-B[a] top: Top int: nat: rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} list: type List lelt: i  j < k record+: record+ dep-isect: Error :dep-isect,  assert: b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] eq_atom: eq_atom$n(x;y) eq_atom: x =a y record-select: r.x length: ||as|| label: ...$L... t
Lemmas :  bag_wf simple-comb_wf nat_wf le_wf not_wf false_wf int_seg_wf select_wf event-ordering+_inc event-ordering+_wf es-E_wf member_wf length_nil length_cons non_neg_length length_wf1 eclass_wf top_wf length_wf_nat

\mforall{}[Info,A,B:Type].    \mforall{}F:bag(A)  {}\mrightarrow{}  bag(B).  \mforall{}[X:EClass(A)].  (F|X|  \mmember{}  EClass(B))


Date html generated: 2011_08_16-PM-05_00_23
Last ObjectModification: 2011_06_02-PM-03_07_55

Home Index