{ [T:Type]. [A:es:EO+(T)  E  Type]. [X:EClass(A[es;e])]. [eo:EO+(T)].
  [e:E].
    (X eo e) = {X(e)} supposing e  X }

{ Proof }



Definitions occuring in Statement :  eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] apply: f a function: x:A  B[x] universe: Type equal: s = t single-bag: {x} bag: bag(T)
Definitions :  atom: Atom es-base-E: es-base-E(es) token: "$token" void: Void fpf-cap: f(x)?z bool: intensional-universe: IType so_apply: x[s] implies: P  Q union: left + right or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) so_lambda: x.t[x] lambda: x.A[x] subtype: S  T top: Top in-eclass: e  X pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] axiom: Ax eclass-val: X(e) single-bag: {x} apply: f a so_apply: x[s1;s2] bag: bag(T) prop: assert: b uimplies: b supposing a equal: s = t universe: Type function: x:A  B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T es-E: E event_ordering: EO event-ordering+: EO+(Info) CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR,  tactic: Error :tactic,  null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q sqequal: s ~ t real: grp_car: |g| int: nat: quotient: x,y:A//B[x; y] eq_int: (i = j) bag-size: bag-size(bs) natural_number: $n bag-only: only(bs) Auto: Error :Auto
Lemmas :  bag-only_wf eq_int_wf bag-size-one assert_of_eq_int bag-size_wf nat_wf eclass_wf member_wf in-eclass_wf assert_wf subtype_rel_wf single-bag_wf eclass-val_wf bag_wf es-E_wf event-ordering+_wf event-ordering+_inc uall_wf intensional-universe_wf dep-eclass_subtype_rel top_wf es-base-E_wf subtype_rel_self

\mforall{}[T:Type].  \mforall{}[A:es:EO+(T)  {}\mrightarrow{}  E  {}\mrightarrow{}  Type].  \mforall{}[X:EClass(A[es;e])].  \mforall{}[eo:EO+(T)].  \mforall{}[e:E].
    (X  eo  e)  =  \{X(e)\}  supposing  \muparrow{}e  \mmember{}\msubb{}  X


Date html generated: 2011_08_16-AM-11_31_21
Last ObjectModification: 2011_06_20-AM-00_28_36

Home Index