{ [st1,st2,st3:SimpleType].  (st1  st2  st2  st3  st1  st3) }

{ Proof }



Definitions occuring in Statement :  st-instance: st1  st2 simple_type: SimpleType uall: [x:A]. B[x] implies: P  Q
Definitions :  void: Void top: Top sqequal: s ~ t true: True false: False decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  st-similar: st-similar(st1;st2) universe: Type subtype: S  T suptype: suptype(S; T) st-vars: st-vars(st) l_member: (x  l) set: {x:A| B[x]}  equal: s = t member: t  T strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] atom: Atom assert: b uall: [x:A]. B[x] isect: x:A. B[x] implies: P  Q prop: exists: x:A. B[x] product: x:A  B[x] function: x:A  B[x] rec: rec(x.A[x]) st-instance: st1  st2 simple_type: SimpleType apply: f a st-subst: st-subst(subst;st) lambda: x.A[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  st-subst_functionality_wrt-st-similar st-similar_transitivity member_wf l_member_wf simple_type_wf st-subst_wf st-similar_wf assert_wf true_wf ifthenelse_wf false_wf st-subst-subst st-vars_wf st-instance_wf

\mforall{}[st1,st2,st3:SimpleType].    (st1  \mleq{}  st2  {}\mRightarrow{}  st2  \mleq{}  st3  {}\mRightarrow{}  st1  \mleq{}  st3)


Date html generated: 2011_08_17-PM-04_57_07
Last ObjectModification: 2011_02_07-PM-04_23_55

Home Index