{ ... }

{ Proof }



Definitions occuring in Statement :  st-similar: st-similar(st1;st2) st-subst: st-subst(subst;st) simple_type: SimpleType assert: b uimplies: b supposing a uall: [x:A]. B[x] function: x:A  B[x] atom: Atom
Definitions :  limited-type: LimitedType rev_implies: P  Q iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q bor: p q guard: {T} st_class: st_class(kind) st_list: st_list(kind) st_union: st_union(left;right) st_prod: st_prod(fst;snd) st_arrow: st_arrow(domain;range) st_const: st_const(ty) st_class-kind: st_class-kind(x) st_class?: st_class?(x) simple_type_ind_st_class: simple_type_ind_st_class_compseq_tag_def st_list-kind: st_list-kind(x) st_list?: st_list?(x) simple_type_ind_st_list: simple_type_ind_st_list_compseq_tag_def st_union-right: st_union-right(x) st_union-left: st_union-left(x) st_union?: st_union?(x) simple_type_ind_st_union: simple_type_ind_st_union_compseq_tag_def st_prod-snd: st_prod-snd(x) st_prod-fst: st_prod-fst(x) st_prod?: st_prod?(x) simple_type_ind_st_prod: simple_type_ind_st_prod_compseq_tag_def st_arrow-range: st_arrow-range(x) st_arrow-domain: st_arrow-domain(x) st_arrow?: st_arrow?(x) simple_type_ind_st_arrow: simple_type_ind_st_arrow_compseq_tag_def st_const?: st_const?(x) simple_type_ind_st_const: simple_type_ind_st_const_compseq_tag_def apply: f a st_var-name: st_var-name(x) st_var?: st_var?(x) band: p  q eq_atom: x =a y eq_atom: eq_atom$n(x;y) simple_type_ind_st_var: simple_type_ind_st_var_compseq_tag_def simple_type_ind: simple_type_ind union: left + right subtype: S  T suptype: suptype(S; T) st-vars: st-vars(st) l_member: (x  l) set: {x:A| B[x]}  rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] universe: Type st-subst: st-subst(subst;st) st-similar: st-similar(st1;st2) atom: Atom ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True false: False void: Void uimplies: b supposing a prop: assert: b implies: P  Q function: x:A  B[x] member: t  T equal: s = t uall: [x:A]. B[x] isect: x:A. B[x] simple_type: SimpleType Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  Complete: Error :Complete,  RepUR: Error :RepUR,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor
Lemmas :  st-similar_weakening simple_type_wf st-vars_wf l_member_wf member_wf st-subst_wf st-similar_wf true_wf ifthenelse_wf false_wf assert_wf assert_witness band_wf st_var?_wf eq_atom_wf st_var-name_wf st_const?_wf st_arrow?_wf st_arrow-domain_wf st_arrow-range_wf st_prod?_wf st_prod-fst_wf st_prod-snd_wf st_union?_wf st_union-left_wf st_union-right_wf st_list?_wf st_list-kind_wf st_class?_wf st_class-kind_wf implies_functionality_wrt_iff iff_weakening_uiff assert_of_eq_atom iff_wf rev_implies_wf assert_of_band

\mforall{}[s:Atom  {}\mrightarrow{}  SimpleType].  \mforall{}[st1,st2:SimpleType].
    \muparrow{}st-similar(st-subst(s;st1);st-subst(s;st2))  supposing  \muparrow{}st-similar(st1;st2)


Date html generated: 2011_08_17-PM-04_56_25
Last ObjectModification: 2011_02_07-PM-04_23_02

Home Index