{ [st1,st2:SimpleType].  st-similar(st1;st2) supposing st1 = st2 }

{ Proof }



Definitions occuring in Statement :  st-similar: st-similar(st1;st2) simple_type: SimpleType assert: b uimplies: b supposing a uall: [x:A]. B[x] equal: s = t
Definitions :  st_class-kind: st_class-kind(x) st_class?: st_class?(x) simple_type_ind_st_class: simple_type_ind_st_class_compseq_tag_def st_list-kind: st_list-kind(x) st_list?: st_list?(x) simple_type_ind_st_list: simple_type_ind_st_list_compseq_tag_def st_union-right: st_union-right(x) st_union-left: st_union-left(x) st_union?: st_union?(x) simple_type_ind_st_union: simple_type_ind_st_union_compseq_tag_def st_prod-snd: st_prod-snd(x) st_prod-fst: st_prod-fst(x) st_prod?: st_prod?(x) simple_type_ind_st_prod: simple_type_ind_st_prod_compseq_tag_def eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) st_arrow-range: st_arrow-range(x) st_arrow-domain: st_arrow-domain(x) st_arrow?: st_arrow?(x) simple_type_ind_st_arrow: simple_type_ind_st_arrow_compseq_tag_def st_const?: st_const?(x) simple_type_ind_st_const: simple_type_ind_st_const_compseq_tag_def rev_uimplies: rev_uimplies(P;Q) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q st_var-name: st_var-name(x) st_var?: st_var?(x) eq_atom: x =a y eq_atom: eq_atom$n(x;y) simple_type_ind_st_var: simple_type_ind_st_var_compseq_tag_def simple_type_ind: simple_type_ind inr: inr x  eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] decision: Decision set: {x:A| B[x]}  apply: f a inl: inl x  atom: Atom union: left + right base: Base so_lambda: x.t[x] sq_type: SQType(T) limited-type: LimitedType bool: rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] st-similar: st-similar(st1;st2) universe: Type prop: implies: P  Q function: x:A  B[x] uall: [x:A]. B[x] assert: b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True false: False void: Void uimplies: b supposing a isect: x:A. B[x] member: t  T equal: s = t simple_type: SimpleType Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  RepUR: Error :RepUR,  tactic: Error :tactic
Lemmas :  assert_witness subtype_base_sq rec_subtype_base base_wf subtype_rel_wf atom_subtype_base product_subtype_base union_subtype_base false_wf ifthenelse_wf true_wf simple_type_wf member_wf assert_of_eq_atom assert_of_band assert_wf st-similar_wf

\mforall{}[st1,st2:SimpleType].    \muparrow{}st-similar(st1;st2)  supposing  st1  =  st2


Date html generated: 2011_08_17-PM-04_55_16
Last ObjectModification: 2011_02_07-PM-04_06_07

Home Index