{ [st1,st2:SimpleType].  (st-similar(st1;st2)  ) }

{ Proof }



Definitions occuring in Statement :  st-similar: st-similar(st1;st2) simple_type: SimpleType bool: uall: [x:A]. B[x] member: t  T
Definitions :  pair: <a, b> limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q bor: p q bnot: b unit: Unit atom: Atom$n int: quotient: x,y:A//B[x; y] set: {x:A| B[x]}  tunion: x:A.B[x] b-union: A  B list: type List so_apply: x[s] union: left + right or: P  Q guard: {T} l_member: (x  l) true: True prop: false: False decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b st_class-kind: st_class-kind(x) st_class?: st_class?(x) st_list-kind: st_list-kind(x) st_list?: st_list?(x) st_union-right: st_union-right(x) st_union-left: st_union-left(x) st_union?: st_union?(x) st_prod-snd: st_prod-snd(x) st_prod-fst: st_prod-fst(x) st_prod?: st_prod?(x) st_arrow-range: st_arrow-range(x) st_arrow-domain: st_arrow-domain(x) st_arrow?: st_arrow?(x) band: p  q st_const?: st_const?(x) subtype: S  T valueall-type: valueall-type(T) st_var: st_var(name) eq_term: a == b universe: Type atom: Atom lambda: x.A[x] implies: P  Q eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B so_lambda: x.t[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_lambda: x y.t[x; y] simple_type_ind: simple_type_ind apply: f a all: x:A. B[x] st-similar: st-similar(st1;st2) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] equal: s = t member: t  T MaAuto: Error :MaAuto,  bool: simple_type: SimpleType function: x:A  B[x] CollapseTHEN: Error :CollapseTHEN
Lemmas :  simple_type_wf bool_wf simple_type_ind_wf valueall-type_wf st_var_wf eq_term_wf member_wf st_const?_wf band_wf st_arrow?_wf st_arrow-domain_wf st_arrow-range_wf st_prod?_wf st_prod-fst_wf st_prod-snd_wf st_union?_wf st_union-left_wf st_union-right_wf st_list?_wf st_list-kind_wf st_class?_wf st_class-kind_wf assert_wf false_wf ifthenelse_wf true_wf simple_type-valueall-type eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf bfalse_wf

\mforall{}[st1,st2:SimpleType].    (st-similar(st1;st2)  \mmember{}  \mBbbB{})


Date html generated: 2011_08_17-PM-04_55_00
Last ObjectModification: 2011_02_07-PM-03_55_31

Home Index