{ [X,T:Type]. [eq:EqDecider(X)]. [g:x:X fp-Type]. [x:X].
    T r g(x)?Top supposing (x  dom(g))  (T r g(x)) }

{ Proof }



Definitions occuring in Statement :  fpf-cap: f(x)?z fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] subtype_rel: A r B assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top implies: P  Q universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a implies: P  Q fpf-cap: f(x)?z top: Top member: t  T prop: so_lambda: x.t[x] ifthenelse: if b then t else f fi  all: x:A. B[x] btrue: tt bfalse: ff so_apply: x[s] bool: unit: Unit iff: P  Q and: P  Q it:
Lemmas :  assert_wf fpf-dom_wf fpf-trivial-subtype-top fpf-ap_wf fpf_wf deq_wf bool_wf not_wf bnot_wf top_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot

\mforall{}[X,T:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[g:x:X  fp->  Type].  \mforall{}[x:X].
    T  \msubseteq{}r  g(x)?Top  supposing  (\muparrow{}x  \mmember{}  dom(g))  {}\mRightarrow{}  (T  \msubseteq{}r  g(x))


Date html generated: 2011_08_10-AM-07_57_41
Last ObjectModification: 2011_06_18-AM-08_17_52

Home Index