{ [X:Type]. [eq:EqDecider(X)]. [f,g:x:X fp-Type].
    {[x:X]. (f(x)?Top r g(x)?Top)} supposing g  f }

{ Proof }



Definitions occuring in Statement :  fpf-sub: f  g fpf-cap: f(x)?z fpf: a:A fp-B[a] subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] top: Top guard: {T} universe: Type deq: EqDecider(T)
Definitions :  member: t  T top: Top so_lambda: x.t[x] prop: all: x:A. B[x] ifthenelse: if b then t else f fi  implies: P  Q btrue: tt bfalse: ff fpf-sub: f  g uall: [x:A]. B[x] so_apply: x[s] cand: A c B uimplies: b supposing a not: A false: False bool: unit: Unit iff: P  Q and: P  Q it:
Lemmas :  fpf-dom_wf fpf-trivial-subtype-top bool_wf assert_wf fpf-ap_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot

\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[f,g:x:X  fp->  Type].
    \{\mforall{}[x:X].  (f(x)?Top  \msubseteq{}r  g(x)?Top)\}  supposing  g  \msubseteq{}  f


Date html generated: 2011_08_10-AM-07_57_33
Last ObjectModification: 2011_06_18-AM-08_17_48

Home Index