{ t:. A:Id List.
    ( {a:Id| (a  A)}  ~ (3 * t) + 1
     (W:{a:Id| (a  A)}  List List
          ((ws:{a:Id| (a  A)}  List
              ((ws  W)
               (||ws|| = ((2 * t) + 1))  no_repeats({a:Id| (a  A)} ;ws)))
           three-intersection(A;W)))) }

{ Proof }



Definitions occuring in Statement :  three-intersection: three-intersection(A;W) Id: Id length: ||as|| int_seg: {i..j} nat: all: x:A. B[x] iff: P  Q implies: P  Q and: P  Q set: {x:A| B[x]}  list: type List multiply: n * m add: n + m natural_number: $n int: equal: s = t no_repeats: no_repeats(T;l) l_member: (x  l) equipollent:  A ~ B
Definitions :  all: x:A. B[x] nat: implies: P  Q and: P  Q member: t  T le: A  B not: A false: False prop: length: ||as|| combination: Combination(n;T) three-intersection: three-intersection(A;W) l_all: (xL.P[x]) ge: i  j  label: ...$L... t ycomb: Y top: Top exists: x:A. B[x] cand: A c B l_member: (x  l) so_lambda: x.t[x] iff: P  Q rev_implies: P  Q n-intersecting: n-intersecting(A;T;n) so_apply: x[s] guard: {T}
Lemmas :  combinations-n-intersecting le_wf Id_wf l_member_wf iff_wf length_wf1 no_repeats_wf equipollent_wf int_seg_wf nat_wf length_nil length_wf_nat top_wf length_cons non_neg_length l_all_wf2 select_wf iff_transitivity l_all_cons and_functionality_wrt_iff

\mforall{}t:\mBbbN{}.  \mforall{}A:Id  List.
    (  \{a:Id|  (a  \mmember{}  A)\}    \msim{}  \mBbbN{}(3  *  t)  +  1
    {}\mRightarrow{}  (\mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List
                ((\mforall{}ws:\{a:Id|  (a  \mmember{}  A)\}    List
                        ((ws  \mmember{}  W)  \mLeftarrow{}{}\mRightarrow{}  (||ws||  =  ((2  *  t)  +  1))  \mwedge{}  no\_repeats(\{a:Id|  (a  \mmember{}  A)\}  ;ws)))
                {}\mRightarrow{}  three-intersection(A;W))))


Date html generated: 2010_08_27-AM-12_50_18
Last ObjectModification: 2009_12_23-PM-03_26_42

Home Index