{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:E(X)  E(X)].
    convergent-flow(es;X;f) supposing tree-flow{i:l}(es;X;f) }

{ Proof }



Definitions occuring in Statement :  tree-flow: tree-flow{i:l}(es;X;f) convergent-flow: convergent-flow(es;X;f) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: b supposing a uall: [x:A]. B[x] top: Top function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a convergent-flow: convergent-flow(es;X;f) member: t  T and: P  Q all: x:A. B[x] implies: P  Q not: A prop: false: False so_lambda: x y.t[x; y] so_apply: x[s1;s2] label: ...$L... t assert: b btrue: tt ifthenelse: if b then t else f fi  true: True es-E-interface: E(X) Id: Id tree-flow: tree-flow{i:l}(es;X;f) exists: x:A. B[x] guard: {T} sq_type: SQType(T) decidable: Dec(P) or: P  Q trans: Trans(T;x,y.E[x; y]) irrefl: Irrefl(T;x,y.E[x; y]) subtype: S  T
Lemmas :  Id_wf es-loc_wf es-E-interface-subtype_rel not_wf es-E-interface_wf es-E_wf fun-connected_wf tree-flow_wf eclass_wf top_wf event-ordering+_wf event-ordering+_inc fun-connected-induction subtype_base_sq bool_wf bool_subtype_base assert_elim assert_wf in-eclass_wf decidable__es-E-equal member_wf atom2_subtype_base

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:E(X)  {}\mrightarrow{}  E(X)].
    convergent-flow(es;X;f)  supposing  tree-flow\{i:l\}(es;X;f)


Date html generated: 2011_08_16-PM-04_03_24
Last ObjectModification: 2011_06_20-AM-00_38_17

Home Index