{ t:. A:Id List.
    (W:Id List List
      ((ws:Id List
          ((ws  W)
           (||ws|| = (t + 1))  no_repeats(Id;ws)  (xws.(x  A))))
       (ws1W.(ws2W.a:Id. ((a  ws1)  (a  ws2)))))) supposing 
       (no_repeats(Id;A) and 
       (||A|| = ((2 * t) + 1))) }

{ Proof }



Definitions occuring in Statement :  Id: Id length: ||as|| nat: uimplies: b supposing a all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q list: type List multiply: n * m add: n + m natural_number: $n int: equal: s = t l_all: (xL.P[x]) no_repeats: no_repeats(T;l) l_member: (x  l)
Definitions :  all: x:A. B[x] iff: P  Q and: P  Q implies: P  Q rev_implies: P  Q member: t  T prop: subtype: S  T so_lambda: x.t[x] Id: Id l_all: (xL.P[x]) le: A  B not: A false: False squash: T true: True cand: A c B l_member: (x  l) exists: x:A. B[x] no_repeats: no_repeats(T;l) uall: [x:A]. B[x] uimplies: b supposing a int_seg: {i..j} lelt: i  j < k nat: so_apply: x[s] sq_type: SQType(T) guard: {T} sq_stable: SqStable(P) two-intersection: two-intersection(A;W)
Lemmas :  l_member_wf length_wf1 no_repeats_wf l_all_wf2 Id_wf subtype_base_sq list_subtype_base atom2_subtype_base select_wf sq_stable_from_decidable decidable__l_member decidable__equal_Id list-set-type2 list-equal-set2 nat_wf not_wf select_member le_wf l_member-settype

\mforall{}t:\mBbbN{}.  \mforall{}A:Id  List.
    (\mexists{}W:Id  List  List
        ((\mforall{}ws:Id  List.  ((ws  \mmember{}  W)  \mLeftarrow{}{}\mRightarrow{}  (||ws||  =  (t  +  1))  \mwedge{}  no\_repeats(Id;ws)  \mwedge{}  (\mforall{}x\mmember{}ws.(x  \mmember{}  A))))
        \mwedge{}  (\mforall{}ws1\mmember{}W.(\mforall{}ws2\mmember{}W.\mexists{}a:Id.  ((a  \mmember{}  ws1)  \mwedge{}  (a  \mmember{}  ws2))))))  supposing 
          (no\_repeats(Id;A)  and 
          (||A||  =  ((2  *  t)  +  1)))


Date html generated: 2011_08_16-AM-10_00_44
Last ObjectModification: 2011_06_18-AM-08_58_35

Home Index