{ 
[Info:{Info:Type| 
Info} ]
    
A,B:{B:Type| valueall-type(B)} .
      
[X:EClass(A)]. 
[Y:EClass(B)].
        (NormalLProgrammable(A;X)
        
 NormalLProgrammable(B;Y)
        
 NormalLProgrammable(A;(X until Y))) }
{ Proof }
Definitions occuring in Statement : 
normal-locally-programmable: NormalLProgrammable(A;X), 
until-class: (X until Y), 
eclass: EClass(A[eo; e]), 
uall:
[x:A]. B[x], 
all:
x:A. B[x], 
squash:
T, 
implies: P 
 Q, 
set: {x:A| B[x]} , 
universe: Type, 
valueall-type: valueall-type(T)
Lemmas : 
isect_subtype_base, 
squash_wf, 
valueall-type_wf, 
uall_wf, 
eclass_wf, 
normal-locally-programmable_wf, 
until-class_wf, 
subtype_base_sq, 
until-class-lpg1
\mforall{}[Info:\{Info:Type|  \mdownarrow{}Info\}  ]
    \mforall{}A,B:\{B:Type|  valueall-type(B)\}  .
        \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
            (NormalLProgrammable(A;X)  {}\mRightarrow{}  NormalLProgrammable(B;Y)  {}\mRightarrow{}  NormalLProgrammable(A;(X  until  Y)))
Date html generated:
2011_08_16-PM-06_20_05
Last ObjectModification:
2011_06_29-PM-12_44_13
Home
Index