Nuprl Lemma : isect_subtype_base

[A:Type]. ∀[B:A ⟶ Type].  (⋂a:A. B[a]) ⊆Base supposing ∃a:A. (B[a] ⊆Base)


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] isect: x:A. B[x] function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop:
Lemmas referenced :  isect_subtype_rel_trivial base_wf exists_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality independent_isectElimination axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (\mcap{}a:A.  B[a])  \msubseteq{}r  Base  supposing  \mexists{}a:A.  (B[a]  \msubseteq{}r  Base)



Date html generated: 2016_05_13-PM-03_19_29
Last ObjectModification: 2015_12_26-AM-09_07_44

Theory : subtype_0


Home Index