{ [M:Type  Type]. [r:pRunType(P.M[P])].
    well-founded-run-lt-witness()  SWellFounded(x run-lt(r) y) 
    supposing e:runEvents(r). ((fst(fst(run-info(r;e)))) < run-event-step(e)) }

{ Proof }



Definitions occuring in Statement :  well-founded-run-lt-witness: well-founded-run-lt-witness() run-lt: run-lt(r) run-event-step: run-event-step(e) runEvents: runEvents(r) run-info: run-info(r;e) pRunType: pRunType(T.M[T]) uimplies: b supposing a uall: [x:A]. B[x] infix_ap: x f y so_apply: x[s] pi1: fst(t) all: x:A. B[x] member: t  T less_than: a < b function: x:A  B[x] universe: Type strongwellfounded: SWellFounded(R[x; y])
Definitions :  sq_type: SQType(T) sqequal: s ~ t limited-type: LimitedType implies: P  Q guard: {T} decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b natural_number: $n eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A and: P  Q uiff: uiff(P;Q) exists: x:A. B[x] subtype_rel: A r B l_member: (x  l) prop: so_lambda: x y.t[x; y] unit: Unit it: spread: spread def pair: <a, b> void: Void set: {x:A| B[x]}  real: grp_car: |g| nat: subtype: S  T pMsg: pMsg(P.M[P]) Id: Id top: Top product: x:A  B[x] int: so_apply: x[s] universe: Type uall: [x:A]. B[x] uimplies: b supposing a so_lambda: x.t[x] isect: x:A. B[x] well-founded-run-lt-witness: well-founded-run-lt-witness() function: x:A  B[x] equal: s = t pRunType: pRunType(T.M[T]) Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  Unfold: Error :Unfold,  well-founded-run-lt apply: f a run-lt: run-lt(r) infix_ap: x f y runEvents: runEvents(r) strongwellfounded: SWellFounded(R[x; y]) member: t  T AssertBY: Error :AssertBY,  axiom: Ax lambda: x.A[x] run-event-step: run-event-step(e) run-info: run-info(r;e) pi1: fst(t) less_than: a < b all: x:A. B[x]
Lemmas :  strongwellfounded_wf runEvents_wf run-lt_wf member_wf unit_wf pRunType_wf pMsg_wf top_wf Id_wf nat_wf run-event-step_wf run-info_wf pi1_wf_top subtype_rel_wf uall_wf well-founded-run-lt subtype_base_sq product_subtype_base isect_subtype_base it_wf unit_subtype_base

\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].
    well-founded-run-lt-witness()  \mmember{}  SWellFounded(x  run-lt(r)  y) 
    supposing  \mforall{}e:runEvents(r).  ((fst(fst(run-info(r;e))))  <  run-event-step(e))


Date html generated: 2011_08_17-PM-03_38_01
Last ObjectModification: 2011_06_18-AM-11_19_24

Home Index