Nuprl Lemma : bm_compare_less_to_greater_eq

[K:Type]. ∀[compare:bm_compare(K)]. ∀[k1,k2:K].  (compare k1 k2 <  (0 ≤ (compare k2 k1)))


Proof




Definitions occuring in Statement :  bm_compare: bm_compare(K) less_than: a < b uall: [x:A]. B[x] le: A ≤ B implies:  Q apply: a natural_number: $n universe: Type
Lemmas :  sq_stable__le decidable__le less_than_transitivity1 less_than_irreflexivity less_than_wf bm_compare_wf
\mforall{}[K:Type].  \mforall{}[compare:bm\_compare(K)].  \mforall{}[k1,k2:K].    (compare  k1  k2  <  0  {}\mRightarrow{}  (0  \mleq{}  (compare  k2  k1)))



Date html generated: 2015_07_17-AM-08_19_34
Last ObjectModification: 2015_01_27-PM-00_37_04

Home Index