Nuprl Lemma : bm_count_prop_pos
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  (0 ≤ bm_count(m))
Proof
Definitions occuring in Statement : 
bm_count: bm_count(m)
, 
binary_map: binary_map(T;Key)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
universe: Type
Lemmas : 
binary_map-induction, 
le_wf, 
bm_count_wf, 
bm_count_E_reduce_lemma, 
false_wf, 
bm_count_T, 
zero-le-nat, 
nat_wf, 
sq_stable__le, 
less_than_wf, 
binary_map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    (0  \mleq{}  bm\_count(m))
Date html generated:
2015_07_17-AM-08_18_47
Last ObjectModification:
2015_01_27-PM-00_40_30
Home
Index