Nuprl Lemma : binary_map-induction

[T,Key:Type]. ∀[P:binary_map(T;Key) ─→ ℙ].
  (P[bm_E()]
   (∀key:Key. ∀value:T. ∀cnt:ℤ. ∀left,right:binary_map(T;Key).
        (P[left]  P[right]  P[bm_T(key;value;cnt;left;right)]))
   {∀v:binary_map(T;Key). P[v]})


Proof




Definitions occuring in Statement :  bm_T: bm_T(key;value;cnt;left;right) bm_E: bm_E() binary_map: binary_map(T;Key) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] int: universe: Type
Lemmas :  uniform-comp-nat-induction all_wf binary_map_wf isect_wf le_wf binary_map_size_wf nat_wf less_than_wf binary_map-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel subtract-is-less lelt_wf uall_wf int_seg_wf le_weakening bm_T_wf bm_E_wf
\mforall{}[T,Key:Type].  \mforall{}[P:binary\_map(T;Key)  {}\mrightarrow{}  \mBbbP{}].
    (P[bm\_E()]
    {}\mRightarrow{}  (\mforall{}key:Key.  \mforall{}value:T.  \mforall{}cnt:\mBbbZ{}.  \mforall{}left,right:binary\_map(T;Key).
                (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[bm\_T(key;value;cnt;left;right)]))
    {}\mRightarrow{}  \{\mforall{}v:binary\_map(T;Key).  P[v]\})



Date html generated: 2015_07_17-AM-08_17_53
Last ObjectModification: 2015_01_27-PM-00_40_26

Home Index