Nuprl Lemma : binary_map-induction
∀[T,Key:Type]. ∀[P:binary_map(T;Key) ─→ ℙ].
  (P[bm_E()]
  
⇒ (∀key:Key. ∀value:T. ∀cnt:ℤ. ∀left,right:binary_map(T;Key).
        (P[left] 
⇒ P[right] 
⇒ P[bm_T(key;value;cnt;left;right)]))
  
⇒ {∀v:binary_map(T;Key). P[v]})
Proof
Definitions occuring in Statement : 
bm_T: bm_T(key;value;cnt;left;right)
, 
bm_E: bm_E()
, 
binary_map: binary_map(T;Key)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
, 
int: ℤ
, 
universe: Type
Lemmas : 
uniform-comp-nat-induction, 
all_wf, 
binary_map_wf, 
isect_wf, 
le_wf, 
binary_map_size_wf, 
nat_wf, 
less_than_wf, 
binary_map-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
subtract-is-less, 
lelt_wf, 
uall_wf, 
int_seg_wf, 
le_weakening, 
bm_T_wf, 
bm_E_wf
\mforall{}[T,Key:Type].  \mforall{}[P:binary\_map(T;Key)  {}\mrightarrow{}  \mBbbP{}].
    (P[bm\_E()]
    {}\mRightarrow{}  (\mforall{}key:Key.  \mforall{}value:T.  \mforall{}cnt:\mBbbZ{}.  \mforall{}left,right:binary\_map(T;Key).
                (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[bm\_T(key;value;cnt;left;right)]))
    {}\mRightarrow{}  \{\mforall{}v:binary\_map(T;Key).  P[v]\})
Date html generated:
2015_07_17-AM-08_17_53
Last ObjectModification:
2015_01_27-PM-00_40_26
Home
Index