Nuprl Lemma : bm_exists_downeq_wf

[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[m:binary-map(T;Key)]. ∀[k:Key]. ∀[p:T ─→ 𝔹].
  (bm_exists_downeq(compare;m;k;p) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bm_exists_downeq: bm_exists_downeq(compare;m;k;p) bm_compare: bm_compare(K) binary-map: binary-map(T;Key) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  binary_map_ind-wf2 bool_wf bfalse_wf le_int_wf eqtt_to_assert assert_of_le_int bor_wf bm_exists_wf binary-map_wf bm_compare_wf
\mforall{}[T,Key:Type].  \mforall{}[compare:bm\_compare(Key)].  \mforall{}[m:binary-map(T;Key)].  \mforall{}[k:Key].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].
    (bm\_exists\_downeq(compare;m;k;p)  \mmember{}  \mBbbB{})



Date html generated: 2015_07_17-AM-08_19_59
Last ObjectModification: 2015_01_27-PM-00_36_41

Home Index