Nuprl Lemma : bm_exists_downeq_wf
∀[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[m:binary-map(T;Key)]. ∀[k:Key]. ∀[p:T ─→ 𝔹].
  (bm_exists_downeq(compare;m;k;p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bm_exists_downeq: bm_exists_downeq(compare;m;k;p)
, 
bm_compare: bm_compare(K)
, 
binary-map: binary-map(T;Key)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
binary_map_ind-wf2, 
bool_wf, 
bfalse_wf, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
bor_wf, 
bm_exists_wf, 
binary-map_wf, 
bm_compare_wf
\mforall{}[T,Key:Type].  \mforall{}[compare:bm\_compare(Key)].  \mforall{}[m:binary-map(T;Key)].  \mforall{}[k:Key].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].
    (bm\_exists\_downeq(compare;m;k;p)  \mmember{}  \mBbbB{})
Date html generated:
2015_07_17-AM-08_19_59
Last ObjectModification:
2015_01_27-PM-00_36_41
Home
Index