Nuprl Lemma : hdf-halted-is-inr
∀[A,B:Type]. ∀[X:hdataflow(A;B)].  X ~ inr ⋅  supposing ↑hdf-halted(X)
Proof
Definitions occuring in Statement : 
hdf-halted: hdf-halted(P)
, 
hdataflow: hdataflow(A;B)
, 
assert: ↑b
, 
it: ⋅
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
inr: inr x 
, 
universe: Type
, 
sqequal: s ~ t
Lemmas : 
hdataflow-ext, 
bag_wf, 
unit_wf2, 
false_wf, 
subtype_base_sq, 
unit_subtype_base, 
equal-unit, 
it_wf, 
true_wf, 
assert_wf, 
hdf-halted_wf, 
hdataflow_wf
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    X  \msim{}  inr  \mcdot{}    supposing  \muparrow{}hdf-halted(X)
Date html generated:
2015_07_17-AM-08_04_42
Last ObjectModification:
2015_01_27-PM-00_17_07
Home
Index