Step
*
1
2
2
2
3
1
of Lemma
slln-lemma3
.....assertion..... 
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. s : ℚ@i
5. k : ℚ@i
6. ∀n:ℕ. ∀i:ℕn.  f[i] < f[n]
7. ∀n:ℕ. ((E(f[n];X[n]) = 0 ∈ ℚ) ∧ (E(f[n];(x.x * x) o X[n]) = s ∈ ℚ) ∧ (E(f[n];(x.(x * x) * x * x) o X[n]) = k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n])@i
9. B : ℚ
10. ∀n:ℕ
      (E(f[n];rv-partial-sum(n;k.if (k =z 0) then 0 else (x.(x * x) * x * x) o (1/k)*rv-partial-sum(k;i.X[i]) fi )) ≤ B)
11. ∀n:ℕ
      (rv-partial-sum(n;k.if (k =z 0) then 0 else (x.(x * x) * x * x) o (1/k)*rv-partial-sum(k;i.X[i]) fi )
       ∈ RandomVariable(p;f[n]))
12. 0 ≤ B
13. B < B + 1
14. ∀n:ℕ. ∀i:ℕn.
      rv-partial-sum(i;k.if (k =z 0)
      then 0
      else (x.(x * x) * x * x) o (1/k)*rv-partial-sum(k;i.X[i])
      fi ) ≤ rv-partial-sum(n;k.if (k =z 0) then 0 else (x.(x * x) * x * x) o (1/k)*rv-partial-sum(k;i.X[i]) fi )
15. nullset(p;(rv-partial-sum(n;k.if (k =z 0)
then 0
else (x.(x * x) * x * x) o (1/k)*rv-partial-sum(k;i.X[i])
fi )─→∞ as n─→∞))
⊢ ∀s:ℕ ─→ Outcome. ∀n:ℕ+.  (Σ0 ≤ i < n. (1/n) * (X i s) ∈ ℚ)
BY
{ (Auto
   THEN Try (RepeatFor 2 ((Using [`p',⌈p⌉;`f',⌈f⌉] Auto⋅ THEN Auto)))
   THEN Try ((Fold `random-variable` 0 THEN Auto))
   THEN Try ((Fold `p-outcome` 0 THEN Auto))
   THEN Try ((RWO "int-eq-in-rationals" 0 THEN Complete (Auto)))
   THEN Try ((DVar `p' THEN Complete (Auto)))) }
Latex:
.....assertion..... 
1.  p  :  FinProbSpace@i
2.  f  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}@i
3.  X  :  n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n])@i
4.  s  :  \mBbbQ{}@i
5.  k  :  \mBbbQ{}@i
6.  \mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]
7.  \mforall{}n:\mBbbN{}
          ((E(f[n];X[n])  =  0)
          \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
          \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k))
8.  \mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n])@i
9.  B  :  \mBbbQ{}
10.  \mforall{}n:\mBbbN{}
            (E(f[n];rv-partial-sum(n;k.if  (k  =\msubz{}  0)
            then  0
            else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
            fi  ))  \mleq{}  B)
11.  \mforall{}n:\mBbbN{}
            (rv-partial-sum(n;k.if  (k  =\msubz{}  0)
              then  0
              else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
              fi  )  \mmember{}  RandomVariable(p;f[n]))
12.  0  \mleq{}  B
13.  B  <  B  +  1
14.  \mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.
            rv-partial-sum(i;k.if  (k  =\msubz{}  0)
            then  0
            else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
            fi  )  \mleq{}  rv-partial-sum(n;k.if  (k  =\msubz{}  0)
            then  0
            else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
            fi  )
15.  nullset(p;(rv-partial-sum(n;k.if  (k  =\msubz{}  0)
then  0
else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
fi  ){}\mrightarrow{}\minfty{}  as  n{}\mrightarrow{}\minfty{}))
\mvdash{}  \mforall{}s:\mBbbN{}  {}\mrightarrow{}  Outcome.  \mforall{}n:\mBbbN{}\msupplus{}.    (\mSigma{}0  \mleq{}  i  <  n.  (1/n)  *  (X  i  s)  \mmember{}  \mBbbQ{})
By
(Auto
  THEN  Try  (RepeatFor  2  ((Using  [`p',\mkleeneopen{}p\mkleeneclose{};`f',\mkleeneopen{}f\mkleeneclose{}]  Auto\mcdot{}  THEN  Auto)))
  THEN  Try  ((Fold  `random-variable`  0  THEN  Auto))
  THEN  Try  ((Fold  `p-outcome`  0  THEN  Auto))
  THEN  Try  ((RWO  "int-eq-in-rationals"  0  THEN  Complete  (Auto)))
  THEN  Try  ((DVar  `p'  THEN  Complete  (Auto))))
Home
Index