Nuprl Lemma : slln-lemma3

p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]). ∀s,k:ℚ.
  ((∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n]))
      nullset(p;λs.∃q:ℚ(0 < q ∧ (∀n:ℕ. ∃m:ℕ(n < m ∧ (q ≤ 0 ≤ i < m. (1/m) (X[i] s)|)))))) supposing 
     ((∀n:ℕ
         ((E(f[n];X[n]) 0 ∈ ℚ)
         ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ)
         ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))


Proof




Definitions occuring in Statement :  nullset: nullset(p;S) rv-compose: (x.F[x]) X rv-disjoint: rv-disjoint(p;n;X;Y) expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a lambda: λx.A[x] function: x:A ─→ B[x] natural_number: $n equal: t ∈ T qdiv: (r/s) qmul: s rationals:
Lemmas :  slln-lemma2 member-less_than int_seg_subtype-nat false_wf nat_wf int_seg_wf all_wf rv-disjoint_wf subtype_rel-random-variable le_weakening2 equal-wf-T-base rationals_wf expectation_wf rv-compose_wf qmul_wf less_than_wf random-variable_wf finite-prob-space_wf rv-partial-sum_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int rv-const_wf int-subtype-rationals eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot int_upper_subtype_nat le_wf nat_properties nequal-le-implies zero-add rv-scale_wf qdiv_wf subtype_rel_set Error :int_nzero-rational,  subtype_rel_sets nequal_wf not-equal-2 decidable__le not-le-2 condition-implies-le minus-add minus-one-mul add-swap add-associates add-commutes add_functionality_wrt_le le-add-cancel2 or_wf equal-wf-base int_subtype_base Error :qle_wf,  squash_wf true_wf p-outcome_wf top_wf assert-bnot neg_assert_of_eq_int less_than_transitivity1 less_than_irreflexivity Error :sum_unroll_base_q,  iff_weakening_equal expectation-rv-const Error :qadd_preserves_qless,  qadd_wf Error :qless_wf,  Error :qadd_comm_q,  Error :qadd_ac_1_q,  Error :qinverse_q,  Error :mon_ident_q,  rv-partial-sum-monotone decidable__lt less-iff-le le-add-cancel lelt_wf Error :q-square-non-neg,  Error :qsum_wf,  subtype_rel_dep_function length_wf subtype_rel-int_seg uiff_transitivity bounded-expectation Error :qless_transitivity_1_qorder,  decidable__equal_int Error :qle_reflexivity,  add-zero minus-zero rv-le_wf le_weakening nat_plus_wf nullset-monotone rv-unbounded_wf exists_wf Error :qabs_wf,  less_than_transitivity2 Error :q-not-limit-zero-diverges-2,  Error :qmul-positive,  Error :qmul_preserves_qle2,  Error :qle_weakening_lt_qorder,  Error :qle_witness,  Error :qless_transitivity_2_qorder,  Error :qmul_comm_qrng,  Error :qle_transitivity_qorder,  Error :qmul_functionality_wrt_qle,  Error :qsum-linearity1,  Error :qsum-non-neg2,  Error :qle_functionality_wrt_implies,  Error :qle_weakening_eq_qorder,  set_wf sq_stable_from_decidable Error :decidable__qle,  Error :qabs-squared,  Error :sum_split_q,  sq_stable__le Error :qadd_preserves_qle,  Error :qadd_inv_assoc_q,  Error :sum_unroll_lo_q,  Error :qadd_ident,  le_antisymmetry_iff
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}s,k:\mBbbQ{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n]))
          {}\mRightarrow{}  nullset(p;\mlambda{}s.\mexists{}q:\mBbbQ{}
                                            (0  <  q
                                            \mwedge{}  (\mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  (n  <  m  \mwedge{}  (q  \mleq{}  |\mSigma{}0  \mleq{}  i  <  m.  (1/m)  *  (X[i]  s)|))))))  supposing 
          ((\mforall{}n:\mBbbN{}
                  ((E(f[n];X[n])  =  0)
                  \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
                  \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k)))  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))



Date html generated: 2015_07_17-AM-08_04_16
Last ObjectModification: 2015_02_03-PM-09_50_07

Home Index