Nuprl Lemma : bounded-expectation
∀p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]). ∀B:ℚ.
  (nullset(p;(X[n]─→∞ as n─→∞))) supposing 
     ((∀n:ℕ. (0 ≤ X[n] ∧ E(f[n];X[n]) < B)) and 
     0 < B and 
     (∀n:ℕ. ∀i:ℕn.  X[i] ≤ X[n]) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))
Proof
Definitions occuring in Statement : 
rv-unbounded: (X[n]─→∞ as n─→∞)
, 
nullset: nullset(p;S)
, 
rv-le: X ≤ Y
, 
expectation: E(n;F)
, 
rv-const: a
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
rationals: ℚ
Lemmas : 
member-less_than, 
int_seg_subtype-nat, 
false_wf, 
nat_wf, 
int_seg_wf, 
rv-le_witness, 
subtype_rel-random-variable, 
le_weakening2, 
Error :qless_witness, 
int-subtype-rationals, 
rv-const_wf, 
expectation_wf, 
all_wf, 
rv-le_wf, 
Error :qless_wf, 
less_than_wf, 
rationals_wf, 
random-variable_wf, 
finite-prob-space_wf, 
Error :qless_transitivity_2_qorder, 
Error :qle_weakening_eq_qorder, 
Error :qless_irreflexivity, 
equal-wf-T-base, 
Error :qmul_preserves_qless, 
qdiv_wf, 
Error :qinv-positive, 
qmul_wf, 
squash_wf, 
true_wf, 
Error :qmul_comm_qrng, 
qinv_wf, 
assert-qeq, 
assert_wf, 
qeq_wf2, 
not_wf, 
iff_weakening_equal, 
Error :qmul_zero_qrng, 
Error :qmul_assoc_qrng, 
Error :qmul_one_qrng, 
Markov-inequality, 
rv-qle_wf, 
equal_wf, 
assert_functionality_wrt_uiff, 
qmul_com, 
Error :qdiv-qdiv, 
Error :qmul-qdiv-cancel2, 
qmul_ident, 
Error :qless_transitivity_1_qorder, 
exists_wf, 
p-open_wf, 
p-measure-le_wf, 
p-outcome_wf, 
Error :qle_wf, 
subtype_rel_dep_function, 
length_wf, 
p-open-member_wf, 
decidable__exists_int_seg, 
subtype_rel-int_seg, 
decidable__cand, 
decidable__lt, 
Error :decidable__qle, 
decidable_wf, 
lelt_wf, 
equal-wf-base, 
iff_wf, 
le_wf, 
subtype_rel_self, 
decidable__equal_int, 
less_than_transitivity2, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-swap, 
add-commutes, 
le-add-cancel, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
decidable__le, 
subtract_wf, 
not-ge-2, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-zero, 
not-le-2, 
subtract-is-less, 
subtype_rel_set, 
Error :qle_reflexivity, 
expectation-monotone-in-first, 
expectation-monotone, 
subtype_base_sq, 
int_subtype_base, 
q_le_wf, 
bool_wf, 
bnot_wf, 
Error :qle-int, 
uiff_transitivity2, 
eqtt_to_assert, 
Error :assert-q_le-eq, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
Error :qle_transitivity_qorder, 
add-mul-special, 
zero-mul, 
sq_stable_from_decidable, 
Error :decidable__qless, 
rv-unbounded_wf, 
set_wf, 
le_weakening
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}B:\mBbbQ{}.
    (nullset(p;(X[n]{}\mrightarrow{}\minfty{}  as  n{}\mrightarrow{}\minfty{})))  supposing 
          ((\mforall{}n:\mBbbN{}.  (0  \mleq{}  X[n]  \mwedge{}  E(f[n];X[n])  <  B))  and 
          0  <  B  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    X[i]  \mleq{}  X[n])  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))
Date html generated:
2015_07_17-AM-08_01_56
Last ObjectModification:
2015_02_03-PM-09_47_36
Home
Index