Nuprl Lemma : rv-qle_wf
∀[k:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(k;n)].  (X ≤ Y ∈ RandomVariable(k;n))
Proof
Definitions occuring in Statement : 
rv-qle: A ≤ B
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas : 
q_le_wf, 
bool_wf, 
eqtt_to_assert, 
Error :assert-q_le-eq, 
iff_weakening_equal, 
int-subtype-rationals, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
not_wf, 
squash_wf, 
true_wf, 
int_seg_wf, 
length_wf, 
rationals_wf, 
nat_wf, 
set_wf, 
list_wf, 
equal-wf-T-base, 
Error :qsum_wf, 
select_wf, 
sq_stable__le, 
l_all_wf2, 
l_member_wf, 
Error :qle_wf
\mforall{}[k:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(k;n)].    (X  \mleq{}  Y  \mmember{}  RandomVariable(k;n))
Date html generated:
2015_07_17-AM-07_58_48
Last ObjectModification:
2015_02_03-PM-09_44_14
Home
Index