Step * 1 2 2 2 3 2 of Lemma slln-lemma3


1. FinProbSpace@i
2. : ℕ ─→ ℕ@i
3. n:ℕ ─→ RandomVariable(p;f[n])@i
4. : ℚ@i
5. : ℚ@i
6. ∀n:ℕ. ∀i:ℕn.  f[i] < f[n]
7. ∀n:ℕ((E(f[n];X[n]) 0 ∈ ℚ) ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ) ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n])@i
9. : ℚ
10. ∀n:ℕ
      (E(f[n];rv-partial-sum(n;k.if (k =z 0) then else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i]) fi )) ≤ B)
11. ∀n:ℕ
      (rv-partial-sum(n;k.if (k =z 0) then else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i]) fi )
       ∈ RandomVariable(p;f[n]))
12. 0 ≤ B
13. B < 1
14. ∀n:ℕ. ∀i:ℕn.
      rv-partial-sum(i;k.if (k =z 0)
      then 0
      else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i])
      fi ) ≤ rv-partial-sum(n;k.if (k =z 0) then else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i]) fi )
15. nullset(p;(rv-partial-sum(n;k.if (k =z 0)
then 0
else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i])
fi )─→∞ as n─→∞))
16. ∀s:ℕ ─→ Outcome. ∀n:ℕ+.  0 ≤ i < n. (1/n) (X s) ∈ ℚ)
⊢ nullset(p;λs.∃q:ℚ(0 < q ∧ (∀n:ℕ. ∃m:ℕ(n < m ∧ (q ≤ 0 ≤ i < m. (1/m) (X[i] s)|)))))
BY
((MoveToConcl (-2))
   THEN InstLemma `nullset-monotone` []
   THEN (RW (AddrC [2;2;2;2] (FoldTopC `guard`)) (-1))
   THEN (BHyp -1  THENM (ReduceSOAps THEN RepUR ``rv-partial-sum`` 0))
   THEN Auto
   THEN Try (RepeatFor ((Using [`p',⌈p⌉;`f',⌈f⌉Auto⋅ THEN Auto)))) }

1
1. FinProbSpace@i
2. : ℕ ─→ ℕ@i
3. n:ℕ ─→ RandomVariable(p;f[n])@i
4. : ℚ@i
5. : ℚ@i
6. ∀n:ℕ. ∀i:ℕn.  f[i] < f[n]
7. ∀n:ℕ((E(f[n];X[n]) 0 ∈ ℚ) ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ) ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n])@i
9. : ℚ
10. ∀n:ℕ
      (E(f[n];rv-partial-sum(n;k.if (k =z 0) then else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i]) fi )) ≤ B)
11. ∀n:ℕ
      (rv-partial-sum(n;k.if (k =z 0) then else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i]) fi )
       ∈ RandomVariable(p;f[n]))
12. 0 ≤ B
13. B < 1
14. ∀n:ℕ. ∀i:ℕn.
      rv-partial-sum(i;k.if (k =z 0)
      then 0
      else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i])
      fi ) ≤ rv-partial-sum(n;k.if (k =z 0) then else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i]) fi )
15. ∀s:ℕ ─→ Outcome. ∀n:ℕ+.  0 ≤ i < n. (1/n) (X s) ∈ ℚ)
16. ∀p:FinProbSpace. ∀[P,Q:(ℕ ─→ Outcome) ─→ ℙ].  ((∀s:ℕ ─→ Outcome. (Q[s]  P[s]))  {nullset(p;P)  nullset(p;Q)})
17. s1 : ℕ ─→ Outcome@i
18. ∃q:ℚ(0 < q ∧ (∀n:ℕ. ∃m:ℕ(n < m ∧ (q ≤ 0 ≤ i < m. (1/m) (X s1)|))))@i
19. B1 : ℚ@i
⊢ ∃n:ℕ
   ∀m:ℕ((n ≤ m)  (B1 ≤ Σ0 ≤ k < m. if (k =z 0) then else (x.(x x) x) (1/k)*λs.Σ0 ≤ i < k. fi  s1))


Latex:



1.  p  :  FinProbSpace@i
2.  f  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}@i
3.  X  :  n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n])@i
4.  s  :  \mBbbQ{}@i
5.  k  :  \mBbbQ{}@i
6.  \mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]
7.  \mforall{}n:\mBbbN{}
          ((E(f[n];X[n])  =  0)
          \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
          \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k))
8.  \mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n])@i
9.  B  :  \mBbbQ{}
10.  \mforall{}n:\mBbbN{}
            (E(f[n];rv-partial-sum(n;k.if  (k  =\msubz{}  0)
            then  0
            else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
            fi  ))  \mleq{}  B)
11.  \mforall{}n:\mBbbN{}
            (rv-partial-sum(n;k.if  (k  =\msubz{}  0)
              then  0
              else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
              fi  )  \mmember{}  RandomVariable(p;f[n]))
12.  0  \mleq{}  B
13.  B  <  B  +  1
14.  \mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.
            rv-partial-sum(i;k.if  (k  =\msubz{}  0)
            then  0
            else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
            fi  )  \mleq{}  rv-partial-sum(n;k.if  (k  =\msubz{}  0)
            then  0
            else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
            fi  )
15.  nullset(p;(rv-partial-sum(n;k.if  (k  =\msubz{}  0)
then  0
else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
fi  ){}\mrightarrow{}\minfty{}  as  n{}\mrightarrow{}\minfty{}))
16.  \mforall{}s:\mBbbN{}  {}\mrightarrow{}  Outcome.  \mforall{}n:\mBbbN{}\msupplus{}.    (\mSigma{}0  \mleq{}  i  <  n.  (1/n)  *  (X  i  s)  \mmember{}  \mBbbQ{})
\mvdash{}  nullset(p;\mlambda{}s.\mexists{}q:\mBbbQ{}.  (0  <  q  \mwedge{}  (\mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  (n  <  m  \mwedge{}  (q  \mleq{}  |\mSigma{}0  \mleq{}  i  <  m.  (1/m)  *  (X[i]  s)|)))))


By

((MoveToConcl  (-2))
  THEN  InstLemma  `nullset-monotone`  []
  THEN  (RW  (AddrC  [2;2;2;2]  (FoldTopC  `guard`))  (-1))
  THEN  (BHyp  -1    THENM  (ReduceSOAps  0  THEN  RepUR  ``rv-partial-sum``  0))
  THEN  Auto
  THEN  Try  (RepeatFor  2  ((Using  [`p',\mkleeneopen{}p\mkleeneclose{};`f',\mkleeneopen{}f\mkleeneclose{}]  Auto\mcdot{}  THEN  Auto))))




Home Index