Nuprl Lemma : right_move_add_inr_lemma
∀x,H,G:Top.  (right-move(G ⊕ H;inr x ) ~ G ⊕ right-move(H;x))
Proof
Definitions occuring in Statement : 
Game-add: G ⊕ H, 
right-move: right-move(g;x), 
top: Top, 
all: ∀x:A. B[x], 
inr: inr x , 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
Game-add: G ⊕ H, 
right-move: right-move(g;x), 
mkGame: {mkGame(f[a] with a:L | g[b] with b:R}, 
Wsup: Wsup(a;b), 
pi2: snd(t), 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid
Latex:
\mforall{}x,H,G:Top.    (right-move(G  \moplus{}  H;inr  x  )  \msim{}  G  \moplus{}  right-move(H;x))
Date html generated:
2018_05_22-PM-09_53_09
Last ObjectModification:
2018_05_20-PM-10_40_08
Theory : Numbers!and!Games
Home
Index