Nuprl Lemma : Set-ind_wf

Set-ind() ∈ ∀[P:Set{i:l} ⟶ ℙ']. ((∀T:Type. ∀f:T ⟶ Set{i:l}.  ((∀t:T. P[f[t]])  P[f"(T)]))  (∀s:Set{i:l}. P[s]))


Proof




Definitions occuring in Statement :  Set-ind: Set-ind() mk-set: f"(T) Set: Set{i:l} uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  Set-ind: Set-ind() set-induction-1-ext member: t ∈ T
Lemmas referenced :  set-induction-1-ext
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis

Latex:
Set-ind()  \mmember{}  \mforall{}[P:Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}']
                            ((\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  Set\{i:l\}.    ((\mforall{}t:T.  P[f[t]])  {}\mRightarrow{}  P[f"(T)]))  {}\mRightarrow{}  (\mforall{}s:Set\{i:l\}.  P[s]))



Date html generated: 2018_05_22-PM-09_47_56
Last ObjectModification: 2018_05_16-PM-03_23_43

Theory : constructive!set!theory


Home Index