Nuprl Lemma : set-induction-1-ext

[P:Set{i:l} ⟶ ℙ']. ((∀T:Type. ∀f:T ⟶ Set{i:l}.  ((∀t:T. P[f[t]])  P[f"(T)]))  (∀s:Set{i:l}. P[s]))


Proof




Definitions occuring in Statement :  mk-set: f"(T) Set: Set{i:l} uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T set-induction-1 W-induction
Lemmas referenced :  set-induction-1 W-induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[P:Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}']
    ((\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  Set\{i:l\}.    ((\mforall{}t:T.  P[f[t]])  {}\mRightarrow{}  P[f"(T)]))  {}\mRightarrow{}  (\mforall{}s:Set\{i:l\}.  P[s]))



Date html generated: 2018_05_22-PM-09_47_54
Last ObjectModification: 2018_05_16-PM-03_22_29

Theory : constructive!set!theory


Home Index