Nuprl Lemma : set-induction-1-ext
∀[P:Set{i:l} ⟶ ℙ']. ((∀T:Type. ∀f:T ⟶ Set{i:l}.  ((∀t:T. P[f[t]]) ⇒ P[f"(T)])) ⇒ (∀s:Set{i:l}. P[s]))
Proof
Definitions occuring in Statement : 
mk-set: f"(T), 
Set: Set{i:l}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
set-induction-1, 
W-induction
Lemmas referenced : 
set-induction-1, 
W-induction
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[P:Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}']
    ((\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  Set\{i:l\}.    ((\mforall{}t:T.  P[f[t]])  {}\mRightarrow{}  P[f"(T)]))  {}\mRightarrow{}  (\mforall{}s:Set\{i:l\}.  P[s]))
 Date html generated: 
2018_05_22-PM-09_47_54
 Last ObjectModification: 
2018_05_16-PM-03_22_29
Theory : constructive!set!theory
Home
Index