Nuprl Lemma : coSet-is-Set

[a:coSet{i:l}]. a ∈ Set{i:l} supposing isSet(a)


Proof




Definitions occuring in Statement :  isSet: isSet(w) Set: Set{i:l} coSet: coSet{i:l} uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] coSet: coSet{i:l} isSet: isSet(w) Set: Set{i:l}
Lemmas referenced :  coW-is-W
Rules used in proof :  hypothesis hypothesisEquality lambdaEquality universeEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:coSet\{i:l\}].  a  \mmember{}  Set\{i:l\}  supposing  isSet(a)



Date html generated: 2018_07_29-AM-09_50_42
Last ObjectModification: 2018_07_24-PM-00_04_05

Theory : constructive!set!theory


Home Index