Nuprl Lemma : coSet-is-Set
∀[a:coSet{i:l}]. a ∈ Set{i:l} supposing isSet(a)
Proof
Definitions occuring in Statement : 
isSet: isSet(w)
, 
Set: Set{i:l}
, 
coSet: coSet{i:l}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
coSet: coSet{i:l}
, 
isSet: isSet(w)
, 
Set: Set{i:l}
Lemmas referenced : 
coW-is-W
Rules used in proof : 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
universeEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:coSet\{i:l\}].  a  \mmember{}  Set\{i:l\}  supposing  isSet(a)
Date html generated:
2018_07_29-AM-09_50_42
Last ObjectModification:
2018_07_24-PM-00_04_05
Theory : constructive!set!theory
Home
Index