Nuprl Lemma : coW-is-W

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  w ∈ W(A;a.B[a]) supposing coW-wfdd(a.B[a];w)


Proof




Definitions occuring in Statement :  coW-wfdd: coW-wfdd(a.B[a];w) coW: coW(A;a.B[a]) W: W(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  cand: c∧ B copath-extend: copath-extend(q;t) copath: copath(a.B[a];w) it: unit: Unit bool: 𝔹 bfalse: ff assert: b isr: isr(x) spreadn: spread3 pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) let: let pcw-partial: pcw-partial(path;n) pcw-pp-barred: Barred(pp) copath-nil: () btrue: tt eq_int: (i =z j) ifthenelse: if then else fi  pcw-path-coPath: pcw-path-coPath(n;p) pi1: fst(t) copath-length: copath-length(p) guard: {T} true: True top: Top subtract: m sq_stable: SqStable(P) uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) coW-wfdd: coW-wfdd(a.B[a];w) exists: x:A. B[x] not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: pcw-path: Path so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: squash: T implies:  Q all: x:A. B[x] coW: coW(A;a.B[a]) param-W: pW W: W(A;a.B[a]) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  member-less_than le_antisymmetry_iff not-equal-2 copath_wf equal-wf-T-base assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity copath_length_nil_lemma pcw-step_wf bnot_wf less_than_irreflexivity le_weakening less_than_transitivity1 assert_wf int_subtype_base equal-wf-base bool_wf eq_int_wf decidable__int_equal primrec-wf2 less_than_wf set_wf minus-minus less-iff-le subtract_wf le_weakening2 not_wf copathAgree_wf copath-length_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 decidable__le equal_wf pcw-path-copathAgree pcw-path-coPath_wf coW_wf coW-wfdd_wf pcw-partial_wf pcw-pp-barred_wf nat_wf exists_wf squash_wf all_wf pcw-path_wf le_wf false_wf it_wf unit_wf2 pcw-step-agree_wf
Rules used in proof :  independent_pairEquality impliesFunctionality equalityElimination closedConclusion baseApply dependent_pairFormation promote_hyp minusEquality voidEquality voidElimination unionElimination addEquality intEquality productElimination independent_functionElimination dependent_functionElimination independent_isectElimination isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality functionEquality independent_pairFormation natural_numberEquality rename setElimination because_Cache functionExtensionality universeEquality cumulativity lambdaEquality applyEquality isectElimination extract_by_obid instantiate baseClosed thin imageMemberEquality imageElimination sqequalHypSubstitution hypothesis lambdaFormation hypothesisEquality dependent_set_memberEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    w  \mmember{}  W(A;a.B[a])  supposing  coW-wfdd(a.B[a];w)



Date html generated: 2018_07_25-PM-01_42_19
Last ObjectModification: 2018_07_23-PM-03_37_39

Theory : co-recursion


Home Index