Nuprl Lemma : pcw-path-coPath_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:Path].
  ∀[n:ℕ]
    ((pcw-path-coPath(n;p) ∈ copath(a.B[a];w))
    ∧ ((copath-length(pcw-path-coPath(n;p)) n ∈ ℤ)
       (copath-at(w;pcw-path-coPath(n;p)) (fst(snd((p n)))) ∈ coW(A;a.B[a])))) 
  supposing StepAgree(p 0;⋅;w)


Proof




Definitions occuring in Statement :  pcw-path-coPath: pcw-path-coPath(n;p) copath-length: copath-length(p) copath-at: copath-at(w;p) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) pcw-path: Path pcw-step-agree: StepAgree(s;p1;w) nat: it: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) implies:  Q and: P ∧ Q unit: Unit member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  coW-item: coW-item(w;b) ext-eq: A ≡ B squash: T coW-dom: coW-dom(a.B[a];w) pcw-steprel: StepRel(s1;s2) bfalse: ff it: unit: Unit bool: 𝔹 cand: c∧ B let: let coPath-at: coPath-at(n;w;p) pi1: fst(t) pi2: snd(t) copath-nil: () spreadn: spread3 pcw-step-agree: StepAgree(s;p1;w) copath-at: copath-at(w;p) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) btrue: tt ifthenelse: if then else fi  eq_int: (i =z j) pcw-path-coPath: pcw-path-coPath(n;p) coW: coW(A;a.B[a]) pcw-path: Path so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B subtract: m uiff: uiff(P;Q) rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] and: P ∧ Q so_apply: x[s] prop: guard: {T} ge: i ≥  false: False implies:  Q nat: member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  coW-item_wf copath-at-extend iff_weakening_equal subtype_rel_self true_wf squash_wf coW-dom_wf pi1_wf subtype_rel_weakening coW-ext copath-extend_wf assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity le_weakening2 pcw-steprel_wf not_wf bnot_wf le_weakening assert_wf bool_wf eq_int_wf int_subtype_base copath-length_wf subtract-add-cancel not-le-2 equal-wf-base and_wf top_wf param-co-W_wf subtype_rel-equal equal_wf equal-wf-T-base pcw-step_wf copath-nil_wf copath_length_nil_lemma coW_wf pcw-path_wf le_wf it_wf unit_wf2 pcw-step-agree_wf nat_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  imageMemberEquality imageElimination hypothesis_subsumption hyp_replacement impliesFunctionality equalityElimination closedConclusion baseApply applyLambdaEquality baseClosed productEquality functionExtensionality independent_pairEquality universeEquality functionEquality dependent_set_memberEquality cumulativity instantiate equalitySymmetry equalityTransitivity because_Cache minusEquality intEquality voidEquality isect_memberEquality applyEquality addEquality productElimination independent_pairFormation unionElimination axiomEquality dependent_functionElimination lambdaEquality sqequalRule voidElimination independent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:Path].
    \mforall{}[n:\mBbbN{}]
        ((pcw-path-coPath(n;p)  \mmember{}  copath(a.B[a];w))
        \mwedge{}  ((copath-length(pcw-path-coPath(n;p))  =  n)
            {}\mRightarrow{}  (copath-at(w;pcw-path-coPath(n;p))  =  (fst(snd((p  n))))))) 
    supposing  StepAgree(p  0;\mcdot{};w)



Date html generated: 2018_07_25-PM-01_41_40
Last ObjectModification: 2018_07_23-AM-11_52_52

Theory : co-recursion


Home Index