Nuprl Lemma : fix_wf_coSet
∀[G:⋂W:𝕌'. (W ⟶ (T:Type × (T ⟶ W)))]. (fix(G) ∈ coSet{i:l})
Proof
Definitions occuring in Statement : 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
coSet: coSet{i:l}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
fix_wf_coW
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
cumulativity, 
functionEquality, 
productEquality
Latex:
\mforall{}[G:\mcap{}W:\mBbbU{}'.  (W  {}\mrightarrow{}  (T:Type  \mtimes{}  (T  {}\mrightarrow{}  W)))].  (fix(G)  \mmember{}  coSet\{i:l\})
Date html generated:
2019_10_31-AM-06_32_58
Last ObjectModification:
2018_08_23-AM-11_26_27
Theory : constructive!set!theory
Home
Index