Nuprl Lemma : isSet_functionality

a1,a2:coSet{i:l}.  (seteq(a1;a2)  (isSet(a1) ⇐⇒ isSet(a2)))


Proof




Definitions occuring in Statement :  isSet: isSet(w) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] coSet: coSet{i:l} seteq: seteq(s1;s2) isSet: isSet(w)
Lemmas referenced :  coW-wfdd_functionality
Rules used in proof :  hypothesis hypothesisEquality lambdaEquality dependent_functionElimination universeEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}a1,a2:coSet\{i:l\}.    (seteq(a1;a2)  {}\mRightarrow{}  (isSet(a1)  \mLeftarrow{}{}\mRightarrow{}  isSet(a2)))



Date html generated: 2018_07_29-AM-09_50_39
Last ObjectModification: 2018_07_25-PM-03_40_36

Theory : constructive!set!theory


Home Index