Nuprl Lemma : coW-wfdd_functionality

[A:𝕌']. ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).  (coW-equiv(a.B[a];w;w')  (coW-wfdd(a.B[a];w) ⇐⇒ coW-wfdd(a.B[a];w')))


Proof




Definitions occuring in Statement :  coW-equiv: coW-equiv(a.B[a];w;w') coW-wfdd: coW-wfdd(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 exists: x:A. B[x] maximal-copath: maximal-copath(a.B[a];w) guard: {T} lelt: i ≤ j < k int_seg: {i..j-} top: Top true: True less_than': less_than'(a;b) le: A ≤ B subtract: m sq_stable: SqStable(P) uimplies: supposing a uiff: uiff(P;Q) false: False rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) nat: subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] prop: squash: T coW-wfdd: coW-wfdd(a.B[a];w) implies:  Q member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  coW-equiv_inversion decidable__int_equal decidable__all_int_seg exists_wf nequal_wf neg_assert_of_eq_int decidable__assert not-all-int_seg assert_wf assert_of_bnot not_wf bool_cases minus-minus zero-mul add-mul-special assert_of_eq_int assert-bdd-all copathAgree_refl copathAgree-nil copath-nil-Agree copath-nil_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert eqtt_to_assert bool_wf eq_int_wf bdd-all_wf int_seg_wf add-member-int_seg2 iff_weakening_equal subtype_rel_self lelt_wf le-add-cancel2 less-iff-le not-lt-2 decidable__lt true_wf squash_wf subtract_wf int_seg_subtype_nat coW-equiv-iff3 coW_wf coW-equiv_wf coW-wfdd_wf copathAgree_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le copath-length_wf equal_wf all_wf copath_wf nat_wf set_wf
Rules used in proof :  independent_pairEquality existsFunctionality addLevel multiplyEquality levelHypothesis equalityUniverse allFunctionality promote_hyp dependent_pairFormation equalityElimination equalitySymmetry equalityTransitivity instantiate voidEquality isect_memberEquality setEquality minusEquality independent_isectElimination independent_functionElimination productElimination voidElimination independent_pairFormation unionElimination dependent_functionElimination natural_numberEquality addEquality dependent_set_memberEquality rename setElimination intEquality because_Cache functionExtensionality applyEquality lambdaEquality cumulativity isectElimination extract_by_obid baseClosed thin imageMemberEquality sqequalRule imageElimination hypothesis sqequalHypSubstitution introduction universeEquality hypothesisEquality functionEquality cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).
        (coW-equiv(a.B[a];w;w')  {}\mRightarrow{}  (coW-wfdd(a.B[a];w)  \mLeftarrow{}{}\mRightarrow{}  coW-wfdd(a.B[a];w')))



Date html generated: 2018_07_29-AM-09_21_53
Last ObjectModification: 2018_07_25-PM-03_34_21

Theory : co-recursion


Home Index