Nuprl Lemma : coW-wfdd_functionality
∀[A:𝕌']. ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).  (coW-equiv(a.B[a];w;w') 
⇒ (coW-wfdd(a.B[a];w) 
⇐⇒ coW-wfdd(a.B[a];w')))
Proof
Definitions occuring in Statement : 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
coW-wfdd: coW-wfdd(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
exists: ∃x:A. B[x]
, 
maximal-copath: maximal-copath(a.B[a];w)
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
top: Top
, 
true: True
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
squash: ↓T
, 
coW-wfdd: coW-wfdd(a.B[a];w)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW-equiv_inversion, 
decidable__int_equal, 
decidable__all_int_seg, 
exists_wf, 
nequal_wf, 
neg_assert_of_eq_int, 
decidable__assert, 
not-all-int_seg, 
assert_wf, 
assert_of_bnot, 
not_wf, 
bool_cases, 
minus-minus, 
zero-mul, 
add-mul-special, 
assert_of_eq_int, 
assert-bdd-all, 
copathAgree_refl, 
copathAgree-nil, 
copath-nil-Agree, 
copath-nil_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
bdd-all_wf, 
int_seg_wf, 
add-member-int_seg2, 
iff_weakening_equal, 
subtype_rel_self, 
lelt_wf, 
le-add-cancel2, 
less-iff-le, 
not-lt-2, 
decidable__lt, 
true_wf, 
squash_wf, 
subtract_wf, 
int_seg_subtype_nat, 
coW-equiv-iff3, 
coW_wf, 
coW-equiv_wf, 
coW-wfdd_wf, 
copathAgree_wf, 
le_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
false_wf, 
decidable__le, 
copath-length_wf, 
equal_wf, 
all_wf, 
copath_wf, 
nat_wf, 
set_wf
Rules used in proof : 
independent_pairEquality, 
existsFunctionality, 
addLevel, 
multiplyEquality, 
levelHypothesis, 
equalityUniverse, 
allFunctionality, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination, 
equalitySymmetry, 
equalityTransitivity, 
instantiate, 
voidEquality, 
isect_memberEquality, 
setEquality, 
minusEquality, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
voidElimination, 
independent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
intEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
isectElimination, 
extract_by_obid, 
baseClosed, 
thin, 
imageMemberEquality, 
sqequalRule, 
imageElimination, 
hypothesis, 
sqequalHypSubstitution, 
introduction, 
universeEquality, 
hypothesisEquality, 
functionEquality, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).
        (coW-equiv(a.B[a];w;w')  {}\mRightarrow{}  (coW-wfdd(a.B[a];w)  \mLeftarrow{}{}\mRightarrow{}  coW-wfdd(a.B[a];w')))
Date html generated:
2018_07_29-AM-09_21_53
Last ObjectModification:
2018_07_25-PM-03_34_21
Theory : co-recursion
Home
Index