Nuprl Lemma : coW-equiv-iff3
ā[A:š']
āB:A ā¶ Type. āw,w':coW(A;a.B[a]).
(coW-equiv(a.B[a];w;w')
āā āp:maximal-copath(a.B[a];w')
āq:maximal-copath(a.B[a];w)
ān:ā
((āi:ān. (copath-length(p i) = i ā ā¤))
ā (āi:ān. ((copath-length(q i) = i ā ā¤) ā§ coW-equiv(a.B[a];copath-at(w;q i);copath-at(w';p i))))))
Proof
Definitions occuring in Statement :
maximal-copath: maximal-copath(a.B[a];w)
,
coW-equiv: coW-equiv(a.B[a];w;w')
,
copath-length: copath-length(p)
,
copath-at: copath-at(w;p)
,
coW: coW(A;a.B[a])
,
int_seg: {i..j-}
,
nat: ā
,
uall: ā[x:A]. B[x]
,
so_apply: x[s]
,
all: āx:A. B[x]
,
exists: āx:A. B[x]
,
iff: P
āā Q
,
implies: P
ā Q
,
and: P ā§ Q
,
apply: f a
,
function: x:A ā¶ B[x]
,
natural_number: $n
,
int: ā¤
,
universe: Type
,
equal: s = t ā T
Definitions unfolded in proof :
copath-length: copath-length(p)
,
copath: copath(a.B[a];w)
,
btrue: tt
,
eq_int: (i =z j)
,
ifthenelse: if b then t else f fi
,
coPath-at: coPath-at(n;w;p)
,
copath-nil: ()
,
copath-at: copath-at(w;p)
,
less_than: a < b
,
cand: A cā§ B
,
coWmem: coWmem(a.B[a];z;w)
,
exists: āx:A. B[x]
,
guard: {T}
,
sq_type: SQType(T)
,
so_apply: x[s1;s2;s3]
,
true: True
,
top: Top
,
subtract: n - m
,
squash: āT
,
sq_stable: SqStable(P)
,
uiff: uiff(P;Q)
,
or: P āØ Q
,
decidable: Dec(P)
,
not: Ā¬A
,
false: False
,
less_than': less_than'(a;b)
,
le: A ā¤ B
,
uimplies: b supposing a
,
pi1: fst(t)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
subtype_rel: A ār B
,
lelt: i ā¤ j < k
,
int_seg: {i..j-}
,
maximal-copath: maximal-copath(a.B[a];w)
,
nat: ā
,
rev_implies: P
ā Q
,
so_apply: x[s]
,
so_lambda: Ī»2x.t[x]
,
prop: ā
,
member: t ā T
,
implies: P
ā Q
,
and: P ā§ Q
,
iff: P
āā Q
,
all: āx:A. B[x]
,
uall: ā[x:A]. B[x]
Lemmas referenced :
minus-zero,
not-equal-2,
equal-wf-base-T,
copathAgree_refl,
pi1_wf,
copath-nil-Agree,
top_wf,
it_wf,
coW-equiv_transitivity,
coW-equiv_inversion,
copath-at-extend,
length-copath-extend,
copathAgree-extend,
copath-extend_wf,
coW-equiv_weakening,
less_than_wf,
coW-item_wf,
copath-last_wf,
coW-dom_wf,
pi2_wf,
add_functionality_wrt_eq,
copathAgree-last,
coW-equiv-iff,
sq_stable__copathAgree,
sq_stable__all,
minus-minus,
zero-mul,
add-mul-special,
subtract_wf,
iff_weakening_equal,
subtype_rel_self,
lelt_wf,
le-add-cancel2,
less-iff-le,
not-lt-2,
decidable__lt,
true_wf,
squash_wf,
decidable__int_equal,
decidable__all_int_seg,
int_subtype_base,
subtype_base_sq,
equal-wf-T-base,
copath_length_nil_lemma,
copath-nil_wf,
le-add-cancel,
add-zero,
add_functionality_wrt_le,
add-commutes,
add-swap,
add-associates,
minus-one-mul-top,
zero-add,
minus-one-mul,
minus-add,
condition-implies-le,
sq_stable__le,
not-le-2,
decidable__le,
false_wf,
int_seg_subtype_nat,
copathAgree_wf,
copath_wf,
dependent-choice,
coW_wf,
copath-at_wf,
le_wf,
copath-length_wf,
equal_wf,
int_seg_wf,
nat_wf,
exists_wf,
maximal-copath_wf,
all_wf,
coW-equiv_wf
Rules used in proof :
hyp_replacement,
levelHypothesis,
equalityUniverse,
multiplyEquality,
dependent_pairFormation,
axiomEquality,
independent_pairEquality,
dependent_pairEquality,
minusEquality,
voidEquality,
isect_memberEquality,
imageElimination,
baseClosed,
imageMemberEquality,
independent_functionElimination,
voidElimination,
unionElimination,
equalitySymmetry,
equalityTransitivity,
independent_isectElimination,
functionExtensionality,
addEquality,
universeEquality,
cumulativity,
instantiate,
productEquality,
because_Cache,
productElimination,
dependent_set_memberEquality,
intEquality,
rename,
setElimination,
natural_numberEquality,
functionEquality,
dependent_functionElimination,
hypothesis,
applyEquality,
lambdaEquality,
sqequalRule,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
independent_pairFormation,
lambdaFormation,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}']
\mforall{}B:A {}\mrightarrow{} Type. \mforall{}w,w':coW(A;a.B[a]).
(coW-equiv(a.B[a];w;w')
\mLeftarrow{}{}\mRightarrow{} \mforall{}p:maximal-copath(a.B[a];w')
\mexists{}q:maximal-copath(a.B[a];w)
\mforall{}n:\mBbbN{}
((\mforall{}i:\mBbbN{}n. (copath-length(p i) = i))
{}\mRightarrow{} (\mforall{}i:\mBbbN{}n
((copath-length(q i) = i)
\mwedge{} coW-equiv(a.B[a];copath-at(w;q i);copath-at(w';p i))))))
Date html generated:
2018_07_29-AM-09_21_45
Last ObjectModification:
2018_07_25-PM-03_17_39
Theory : co-recursion
Home
Index