Nuprl Lemma : coW-equiv-iff3
∀[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).
    (coW-equiv(a.B[a];w;w')
    
⇐⇒ ∀p:maximal-copath(a.B[a];w')
          ∃q:maximal-copath(a.B[a];w)
           ∀n:ℕ
             ((∀i:ℕn. (copath-length(p i) = i ∈ ℤ))
             
⇒ (∀i:ℕn. ((copath-length(q i) = i ∈ ℤ) ∧ coW-equiv(a.B[a];copath-at(w;q i);copath-at(w';p i))))))
Proof
Definitions occuring in Statement : 
maximal-copath: maximal-copath(a.B[a];w)
, 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
copath-length: copath-length(p)
, 
copath-at: copath-at(w;p)
, 
coW: coW(A;a.B[a])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
copath-length: copath-length(p)
, 
copath: copath(a.B[a];w)
, 
btrue: tt
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
coPath-at: coPath-at(n;w;p)
, 
copath-nil: ()
, 
copath-at: copath-at(w;p)
, 
less_than: a < b
, 
cand: A c∧ B
, 
coWmem: coWmem(a.B[a];z;w)
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
sq_type: SQType(T)
, 
so_apply: x[s1;s2;s3]
, 
true: True
, 
top: Top
, 
subtract: n - m
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
pi1: fst(t)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
maximal-copath: maximal-copath(a.B[a];w)
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
minus-zero, 
not-equal-2, 
equal-wf-base-T, 
copathAgree_refl, 
pi1_wf, 
copath-nil-Agree, 
top_wf, 
it_wf, 
coW-equiv_transitivity, 
coW-equiv_inversion, 
copath-at-extend, 
length-copath-extend, 
copathAgree-extend, 
copath-extend_wf, 
coW-equiv_weakening, 
less_than_wf, 
coW-item_wf, 
copath-last_wf, 
coW-dom_wf, 
pi2_wf, 
add_functionality_wrt_eq, 
copathAgree-last, 
coW-equiv-iff, 
sq_stable__copathAgree, 
sq_stable__all, 
minus-minus, 
zero-mul, 
add-mul-special, 
subtract_wf, 
iff_weakening_equal, 
subtype_rel_self, 
lelt_wf, 
le-add-cancel2, 
less-iff-le, 
not-lt-2, 
decidable__lt, 
true_wf, 
squash_wf, 
decidable__int_equal, 
decidable__all_int_seg, 
int_subtype_base, 
subtype_base_sq, 
equal-wf-T-base, 
copath_length_nil_lemma, 
copath-nil_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
decidable__le, 
false_wf, 
int_seg_subtype_nat, 
copathAgree_wf, 
copath_wf, 
dependent-choice, 
coW_wf, 
copath-at_wf, 
le_wf, 
copath-length_wf, 
equal_wf, 
int_seg_wf, 
nat_wf, 
exists_wf, 
maximal-copath_wf, 
all_wf, 
coW-equiv_wf
Rules used in proof : 
hyp_replacement, 
levelHypothesis, 
equalityUniverse, 
multiplyEquality, 
dependent_pairFormation, 
axiomEquality, 
independent_pairEquality, 
dependent_pairEquality, 
minusEquality, 
voidEquality, 
isect_memberEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
functionExtensionality, 
addEquality, 
universeEquality, 
cumulativity, 
instantiate, 
productEquality, 
because_Cache, 
productElimination, 
dependent_set_memberEquality, 
intEquality, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
dependent_functionElimination, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).
        (coW-equiv(a.B[a];w;w')
        \mLeftarrow{}{}\mRightarrow{}  \mforall{}p:maximal-copath(a.B[a];w')
                    \mexists{}q:maximal-copath(a.B[a];w)
                      \mforall{}n:\mBbbN{}
                          ((\mforall{}i:\mBbbN{}n.  (copath-length(p  i)  =  i))
                          {}\mRightarrow{}  (\mforall{}i:\mBbbN{}n
                                      ((copath-length(q  i)  =  i)
                                      \mwedge{}  coW-equiv(a.B[a];copath-at(w;q  i);copath-at(w';p  i))))))
Date html generated:
2018_07_29-AM-09_21_45
Last ObjectModification:
2018_07_25-PM-03_17_39
Theory : co-recursion
Home
Index