Nuprl Lemma : dependent-choice
∀[T:ℕ ⟶ Type]. ∀[R:n:ℕ ⟶ T[n] ⟶ T[n + 1] ⟶ ℙ].
  ((∀n:ℕ. ∀x:T[n].  ∃y:T[n + 1]. R[n;x;y])
  
⇒ (∀x0:T[0]. ∃f:n:ℕ ⟶ T[n]. (((f 0) = x0 ∈ T[0]) ∧ (∀n:ℕ. R[n;f n;f (n + 1)]))))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
cand: A c∧ B
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
guard: {T}
, 
ge: i ≥ j 
, 
pi1: fst(t)
, 
so_apply: x[s1;s2;s3]
, 
true: True
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
add-subtract-cancel, 
primrec-wf2, 
set_wf, 
primrec1_lemma, 
le_weakening2, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
le-add-cancel2, 
subtype_rel-equal, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
primrec-unroll, 
minus-minus, 
less-iff-le, 
not-ge-2, 
subtract_wf, 
primrec0_lemma, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
equal_wf, 
subtype_rel_self, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
decidable__le, 
exists_wf, 
all_wf, 
le_wf, 
false_wf, 
nat_wf
Rules used in proof : 
productEquality, 
instantiate, 
equalityElimination, 
axiomEquality, 
intWeakElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_pairFormation, 
universeEquality, 
cumulativity, 
functionEquality, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
addEquality, 
because_Cache, 
lambdaEquality, 
isectElimination, 
independent_pairFormation, 
sqequalRule, 
natural_numberEquality, 
dependent_set_memberEquality, 
extract_by_obid, 
introduction, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
productElimination, 
sqequalHypSubstitution, 
thin, 
promote_hyp, 
hypothesis, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:\mBbbN{}  {}\mrightarrow{}  Type].  \mforall{}[R:n:\mBbbN{}  {}\mrightarrow{}  T[n]  {}\mrightarrow{}  T[n  +  1]  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}n:\mBbbN{}.  \mforall{}x:T[n].    \mexists{}y:T[n  +  1].  R[n;x;y])
    {}\mRightarrow{}  (\mforall{}x0:T[0].  \mexists{}f:n:\mBbbN{}  {}\mrightarrow{}  T[n].  (((f  0)  =  x0)  \mwedge{}  (\mforall{}n:\mBbbN{}.  R[n;f  n;f  (n  +  1)]))))
Date html generated:
2018_07_25-PM-02_09_07
Last ObjectModification:
2018_07_25-PM-01_31_32
Theory : fun_1
Home
Index